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ABSTRACT

These lectures provide an introductory review of big bang cosmology. I
discuss the expanding Friedmann-Robertson-Walker universe, summarizing
the observational evidence which has led to its adoption as the ‘standard’
cosmological model and reviewing its basic properties. Subsequent lectures
provide an overview of the early universe. The final lectures give an intro-
duction to the inflationary universe, beginning with the motivating puzzles
of the standard cosmology (the horizon and flatness problems) and end-
ing with the inflationary production of quantum field fluctuations and their
possible role in seeding the large-scale structure of the Universe.

1. Introduction

In the late 1970’s and early 1980’s,  theoretical cosmology underwent a renais-
sance: extrapolating concepts from particle physics, in particular the standard elec-
troweak gauge theory, to very high energies, a framework emerged in which one
could meaningfully speculate about the evolution of the very early universe. This
marriage of particle physics and cosmology led to a number of remarkable develop-
ments, including models for the generation of the baryon asymmetry, the inflation-
ary scenario, the notion that topological defects could be created in cosmological
phase transitions, and predictions for non-baryonic particle dark matter, to name
just a few.

In recent years, observational cosmology has been undergoing its own rebirth.
There has been an explosion of information on the large-scale clustering of galaxies
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from redshift, peculiar velocity, and photometric surveys gathered by ground-based
telescopes (see the lectures by Kirshner in this volume). Studies of rich clusters of
galaxies via their gravitational lensing’effects as well as X-ray emission from hot
intracluster gas have started to provide new clues to the distribution of dark matter.
In addition, the recent detection of large-angle anisotropies in the cosmic microwave
background radiation by the COBE satellite provides the first probe of structure

’ on very large scales. while a series of anisotropy experiments on smaller scales now
have tantalizing results. On the scale of the universe itself, there has been steady
progress in attempts to measure the cosmological parameters (in particular, the age,
expansion rate, and mean density) as well as the light element abundances more
precisely (see the lectures by Schramm and Walker).

As a consequence of these observational advances, cosmology is becoming data-
driven in an unprecedented way: theorists no longer have the luxury of untethered
speculation, but must now confront their models with an impressive array of ob-
servations. There is still debate about the reliability and interpretatiou of much
of the data, but we are definitely entering the ‘scientific’ age of cosmology: those
theories which are sufficiently worked out are becoming increasingly falsifiable and
many will stand or fall in the coming years. This is a very healthy development
for the field. It is safe to say that at present the big bang framework for the large-
scale evolution of the universe remains healthy, but that we still lack a standard,
tested model for the origin and evolution of structure within this framework (see
the lectures by Scherrer on structure formation).

In these introductory lectures, I cover only a very small portion of the many
topics of recent interest in cosmology. The first chapters provide a general overview
of the standard cosmology, the hot big bang model, focusing on its kinematics and
dynamics, the observational evidence in its favor, and the current status of mea-
surements of the global cosmological parameters. Subsequent chapters review the
early universe, exploring aspects of the cosmic microwave background radiation and
particle relics. The final section presents a brief introduction to the inflationary sce-
nario for the very early universe and some of its observational implications. The
inflationary scenario has not yet received the empirical backing to justify its inclu-
sion in the ‘standard’ cosmological model; it is discussed here because it nevertheless
provides a compelling theoretical framework for the very early universe, one which
should be tested by observations in coming years.

Readers wishing to delve more fully into these topics would do well to move
on to two textbooks which cover them in substantial detail: Principles of Physical
Cosmology, by P. J. E. Peebles’, and The Early Universe, by E. W. Kolb and M. S.
Turner*.

Before plunging in, I note that the appendix contains a brief discursion  on
notation and units.
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2. The Standard Cosmology

2.1. Homogeneity, Isotropy, and the Cosmological Principle

The standard hot Big Bang model, based on the homogeneous and isotropic
Friedmann-Robertson-Walker (FRW) spacetimes, is a remarkably successful oper-
ating hypothesis describing the evolution of the Universe on the largest scales. It
provides a framework for such observations as the Hubble law of recession of galax-
ies, interpreted in terms of the expansion of the universe; the abundances of the light
elements, in excellent agreement with the predictions of primordial nucIeosynthesis;
and the thermal spectrum and angular isotropy of the cosmic microwave background
radiation (CMBR), as expected from a hot, dense early phase of.expansion.

While homogeneity and isotropy are, strictly speaking, assumptions of the model,
they rest on a strong and,growing  foundation of observational support. The evi-
dence for angular isotropy on large scales comes from the smallness of the CMBR
large-angle anisotropy detected by COBE 3 and FIRS 4 (the quadrupole anisotropy
detected in the first year of COBE data is (AT/T),=2 N 5 x lo-“), from the isotropy
of radiation backgrounds at other wavelengths, as well as from the isotropy of deep
galaxy and radio source counts. Note that these different sources carry information
about quite disparate scales and types of matter in the Universe. For example,
the APM’ and EDSG@ surveys measured the angular positions of more than one
million galaxies over an area covering about 10 % of the southern sky out to an
effective depth of roughly 600 h-’ Mpc. The galaxy surveys give us information
about the local distribution of luminous matter in the universe. On the other hand,
through the Sachs-Wolfe effect, the large-angle CMBR measurements directly probe
the gravitational potential over length scales of order 6000 h-l Mpc, and are thus
sensitive to the mass distribution itself - the distinction is important to keep in
mind, since the evidence for dark matter should lead us to be wary about identify-
ing the distribution of light with that of mass. We will return to the CMBR below
and first focus on the galaxy distribution.

In a survey of galaxy angular positions to some limiting apparent brightness,
the joint probability of finding two galaxies in elements of solid angle dRr and dR2
separated by an angle 8 is given by

@ = N2dRrclR*[l  + w&)] )

where N is the mean surface density of galaxies in the survey and w,,(8), the
galaxy two-point angular correlation function, measures the excess probability over
random of finding a galaxy pair with this separation. If galaxies are distributed
isotropically on large scales, we should find w&8) 3 0 at large angles, and the

correlation function should scale in a definite way with survey depth, both of which
are observed. The APM data for w are shown in Fig. 1 (from5).  The correlation
function is a power law, wgg(e) N *67 for 8 ;5 lo, but breaks below this power law
ate -30. for0 2 607 3 IW99 (0)l 6 5 ‘zX 4 and becomes lost in the noise. This behavior
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Figure 1: Galaxy angular correlation function q,,(e) measured in the APM survey, .
for galaxies in the apparent magnitude interval 17 < bJ < 20.

implies that the variance in the number of galaxies in a patch of fixed angular size
becomes small for large patch size: in other words, averaged over sufficently  large
angular scales, we see roughly the same number of galaxies (brighter than a fixed
limit) per steradian in different parts of the sky.

Evidence for large-scale homogeneity comes in part from galaxy redshift  surveys. .
However, compared to the angular photometric surveys, which currently give two-
dimensional information for several million galaxies, currently complete redshift
surveys yield three-dimensional information for typically several thousand galaxies
in a more local neighborhood. In the redshift  surveys, one can verify directly that
the rms fluctuations in the spatial number density of galaxies become small when
averaged over large enough scales. For example, in the full-sky surveys selected from
infrared sources in the IRAS catalog (the 1.2 Jy survey of Fisher. eta1.r and the l-
in-6 QDOT survey of Efstathiou, etal.s shown in Fig. 2), the rms fluctuation in the
number of galaxies in cubical volumes of side L = GOh-’ Mpc is of order SN,,,/N,,l N
0.2 and decreases with increasing cell volume. This approach to homogeneity is
roughly consistent with that seen in the much deeper (but two-dimensional) angular
surveys. [In fact, the approach to homogeneity as a function of increasing scale
observed in Fig. 1 is somewhat more gradual than was expected in the popular
cold dark matter model for galaxy formation-this is the famous problem of extra
large-scale power, which we will comment upon later.] Larger structures such as
superclusters, great attractors, great voids, and long filaments do exist: and have
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Figure 2: An equal-area projection of the IRAS-QDOT galaxies (open circles) at
distances in the range 20 - 500h-’  Mpc. Solid squares are regions not surveyed, and
the black band is an excluded region encompassing the Galactic disk (from ref.lO).

received considerable attention. Of particular note in this regard was the discovery
of the Great WalI, extending roughly 170 x 60 x 5he3 Mpc3, by Geller and Huchrag
in the Center for Astrophysics (CfA) survey extension. But in a statistical sense,
the net fluctuations in galaxy number become small on the largest scales where they
have been reliably counted in large-area redshift surveys. This is consistent with
the visual impression from Fig. 2.

This trend is confirmed by the visual appearance of large-scale structure in the
ongoing Las Campanas  redshift  survey”: going considerably deeper than the CfA
survey, they do not find evidence for coherent structures larger than the Great
Wall. The Las Campanas survey uses a multifiber spectrograph to simultaneously
measure many redshifts in the same field, an ingenious technological development
which makes possible the extension of complete large-area redshift  surveys to greater
depths in a finite survey time. Advances in multi-fiber spectroscopy will be further
exploited by the Sloan Digital Sky Survey, which aims to measure one million galaxy
redshifts over a contiguous area of 7r sr in the northern sky. This survey will use
a 600-fiber spectrograph to accumulate redshifts at an unprecedented rate. A con-
current photometric survey will measure angular positions for roughly 50 million
galaxies.

From the CMBR and galaxy observations discussed above, we infer that on
large scales the universe appears to be distributed in a statistically homogeneous
and isotropic way around us. To step from this evidence to a cosmological model,
we must add to it a further assumption, because we observe the universe from only
a single vantage point and have direct information only about conditions on our
past light cone. This assumption, often called the Copernican Principle, states that
we do not occupy a special position in the Universe: the conditions we observe are
typical of those seen by observers on distant galaxies. By itself, the Copernican
Principle would allow a large range of permissible cosmological models, e.g., an
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inhomogeneous fractal universe with self-similar structure on all scales, or homo-
geneous models with anisotropic expansion in different directions. However, when
combined with the observations of isotropy above, the Copernican principle becomes
quite powerful, for it implies that the Universe should appear isotropic about every
point. By a straightforward geometric argument, isotropy about every point (or
more precisely, about every local fundamental observer comoving with the cosmic
fluid) in turn impiies that the Universe is spatialIy  homogeneous. i.e., that there
exist spacelike 3-surfaces of uniform energy-momentum which evolve according to a
universal time t. This more general assumption of global homogeneity and isotropy
is called the Cosmological Principle, a symmetry principle that is the foundation
of the standard cosmology.

At this point, one is naturally tempted to ask why the universe should have such
strong symmetries of isotropy and homogeneity. The attempt to provide a dynam-
ical answer to this question is one of the motivating forces behind the inflationary
scenario, which we shall discuss later on. For now, we will adopt the cosmological
principle as a working hypothesis and explore some of its consequences.

2.2. Hubble’s Lziw and Particle Kinematics

The cosmological principle leads directly to Hubble’s law of the expanding uni-
verse. Consider a triangle formed by three fundamental observers (each of whom
defines the local cosmic rest frame) at some initial time. If the universe remains
homogeneous and isotropic over time, then the triangle at all later times must be
similar to the original one: the length of each side scales up by the same factor a(t).
Extending this argument to all other fundamental observers, we see that a(t) must
be a universal scale factor, such that the distance s(t) between any two fundamental
observers satisfies e(t) = &z(t), where & is the initial separation. Then the relative
speed of one observer with respect to the other is given by

v(t) = dC/& = i&J = (iz/u)C(t) 3  H(t)C(t)  . (2.2)

Note that H is in general time-dependent, but for observers sufficiently nearby
that the light travel time e/c is small compared to the time over which H changes
appreciably, we can replace H by its present value, H(to)  E Ho, where subscript 0
denotes the present epoch. Relation (2.2) then reproduces Hubble’s observation in
1929 that t,lie recession speed of ;I g&xv is proportional to its cliStiUlCc  from 115.v
The proportionality constant, Ho = (IL/u)s,  is now known as the Hubble parameter.

A recent example of this is shown in Fig. 3, taken from ref.‘*: each circle indi-
cates a cluster of galaxies, with distance estimated using the Tully-Fisher relation
for spiral galaxies and recession velocity inferred from the redshift  (see below); the
horizontal error bars indicate the 1 - u spread in inferred distances for a number
of galaxies per cluster. The slope of the straight line fit to the points is Ho 2c 80
km/sec/Mpc; other methods of estimating Ho yield values in the range 40 - 100
km/sec/Mpc, and it is conventional to write this as Ho = 1OOh km/sec/Mpc, with
0.4 < h < 1. (The closed circles around 40 Mpc indicate clusters thought to be
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Figure 3: Hubble’s law: galaxy recession speed is shown against distance inferred
from the Tully-Fisher relation.

falling into the Great Attractor region, an inhomogeneity that locally perturbs the
Hubble flow.)

The cosmological principle, with eqn.(2.2),  tells us about the kinematics of par-
ticle motions in the universe. First consider non-relativistic particles. A massive
free particle passes a fundamental observer FOr at time t with relative speed vP < c:
since the FO is at rest with respect to the local fluid, I+, is the peculiar velocity of
the particle with respect to the local rest frame. After a time interval dt, the par-
ticle has moved a distance de = vpdt  and overtakes a second fundamental observer
FOa, who has a speed dv = H(t)de = Hv,dt relative to For. At that time, FOs
measures the particle’s peculiar velocity to be vp(t + dt) = v,(t) - dv. Thus, the
peculiar velocity satisfies the equation of motion

dv, dv-z--z
dt dt

The solution is 1

(2.3)

that is, in a homogeneous and isotropic universe, peculiar velocities decrease with
the expansion. Now consider a dilute non-relativistic gas in thermal equilibrium.
By equipartition, the mean kinetic energy is m(v*)/2  = (3/2)1;~T’,  where Ts is
the gas temperature; by eqn.(2.4) the gas temperature satisfies 7” - vu2  - a-*.
This applies, for example, to baryons well after they decouple from the photon
background (before decoupling, the baryon temperature is tied by scattering to the
photon temperature, which scales differently-see below).



The same reasoning can be applied to study the evolution of relativistic particles.
Consider a photon with initial frequency u(t) as measured by For. After the interval
dt, it has travelled a distance de = cdt and passes FOz, who has a speed v = Hde =
Hcdt with respect to For. The photon frequency u(t +dt) observed by FO2 is given
by the first-order Doppler shift,

dv = v(t + dt) - v(t) = -zf = -uHdt  . (2.5)

The frequency thus satisfies

with solution

du h
dt = -+a ’

1

(2.6)

The photon frequency is redshifted with the expansion, and its wavelength is stretched
with the scale factor, X(t) N Y-I N a. For a photon gas in thermal equilibrium,
the temperature thus scales inversely with the scale factor, T, w (E,) m v N a-‘.
Generalizing the .argument,  one finds that the De Broglie wavelengths of all free
particles follow the scale factor in .this way. This leads us to define the redshift  z:

Lb* 4to>1 + z(t=)  = x = -
cm 4)

( 2 . 8 )

is the ratio of the photon wavelength at emission (te) to its wavelength observed at
the present (to):  This expression holds more generally than this derivation suggests:
it is valid even when the period Y-’ is comparable to or longer than t (although
its operational meaning is then less -transparent). The redshift  z thus plays several
roles: through the Doppler shift, it is a measure of recession velocity, v N cz; through
the Hubble law, it is a measure of distance, v = cz = Hoe; and through eqn.(2.8),
the redshift  r(t) can be used to characterize a cosmological epoch t. The most
distant objects directly observed are luminous quasars, which have been seen out to
redshifts approaching .z = 5. By comparison, the photons in the cosmic microwave
background radiation were probably emitted (or, more precisely, last scattered) at
a redshift  z N 1000.

2.3. The Metric: F’riedmann-Robertson-Walker Models

In the context of general relativity, the cosmological principle severely restricts
the form of the spatial geometry: a uniform stress-energy momentum tensor implies
that the constant-time 3-surfaces have uniform spatial curvature. The metric on
such surfaces has the form

ds; = 2(t) 1 Fir2 + r* (do’ + sin* Bdd*)] , (2.9)
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where u(t) is the global scale factor which describes the overall expansion or con-
traction, r,0, $J are the (fixed) comoving coordinates carried by the fundamental
observers, and Ic = 0, 1, -1 is the sign of the spatial curvature. The case k = 0 cor-
responds to flat, Euclidean 3-space ( R3) written in spherical coordinates, k = 1 cor-
responds to the geometry of the three-sphere (S3), and k = -1 to the S-hyperboloid
( H3), the three-dimensional analogue of a hyperbolic saddle. Thus, models with
k 5 0 are spatially infinite (open), while those with X: = 1 are spatially finite
(closed). (Note that the apparent singularity at r = fl for X: = 1 is the usual
coordinate singularity at the poles of a sphere.) By homogeneity and isotropy, the
full spacetime metric then takes the Friedmann-Robertson-Walker (FRW) form

ds* = g,F,RWdz~dcf = dt2 - ds; , (2.10)

where t is proper time measured on the clocks carried by the fundamental comoving
observers.

We can now be somewhat more precise about the assumption of homogeneity and
isotropy: clearly this is meant to be taken in some average sense over large scales. It
is useful to think of this perturbatively: the actual spacetime metric can be written
as the FRW metric plus a perturbation: gPP = gLURw  + h&x, t). In an appropriate
gauge, hm satisfies an equation of motion analogous to the Newtonian potential
4. Through the Sachs-Wolfe effect, the COBE observations roughly indicate that
ST/T N 4 N ho0  N 1O-5 < gLRw = 1: the departure from the FRW metric on large
scales is very small (at least in the chosen gauge). This argument extends to smaller
scales as well: although galaxies represent highly non-linear condensations of the
mass density, their associated gravitational potential is small, 4 d 10m4. Thus at
least when averaged over scales larger than individual galaxies, the perturbation to
the FRW spacetime metric associated with inhomogeneities is very small, and the
homogeneity assumption is an excellent first approximation.

The FRW models are characterized by the global scale factor u(t), whose dynam-
ics is determined by the matter content of the universe through Einstein’s equations.

RP” - ;gpvR - kg,, =  SrGT,,  . (2.11)

Treating the matter as a perfect fluid locally at rest, and using the FRW metric.
these become t,he Friedmann equations

(2.12)

and
ii 47rG(p  + 3p) A- -- -
U 3

+a . (2.13)

Here p = Too is the mean energy density of matter, p = Tii is its pressure, and A is the
cosmological constant, i.e., the effective contribution to the energy-momentum from
the vacuum state. Although it follows from the Einstein equations, it is also useful
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to separately write down the energy-momentum conservation equation, V”Tclv = 0,
for the fluid in the FRW universe,

dpz+3H(p+p)=O  - (2.14)

Observations suggest that the fluid energy density of the universe is currently
dominated by non-relativistic matter (m), while the early universe was dominated
by ultrarelativistic particles, or radiation (T). Non-relativistic matter is also some-
times called pressureless dust, because its fluid pressure is dynamically negligible,

Pm N Pm(V*) e Pm - (2.15)

In this case, from eqn.(2.14),  the energy density scales as

pm N am3  . (2.16)

This is consistent with conservation of particle number in a fixed comoving volume
(nm N am3), since the particle energy is dominated by its rest-mass, pm = mn,. For
radiation, the equiition of state is

PT = PJ3 1 (2.17)

and eqn.(2.14) then yields
pp - as4 . (2.18)

The faster fall-off of Pr with the scale factor is consistent with the Doppler redshift  of
the frequency of a photon emitted by a receding observer in the expanding universe,
eqn.(2.7).  For massless  particles with average energy (E,), this implies (ET) N a-’
and thus pr z (E,)n, - aw4.

Two features of the solutions to the Friedmann equation (2.12) with A = 0
are worth noting. In this case, there is a one-to-one correspoudence  between the
spatial geometry and the fate of the universe: open models (I; 5 0) expand forever,
while closed models (k > 0) eventually recollapse, because the energy density for
matter and radiation fall off faster than a-*. Conversely, in the early universe.
a << a,-,, the matter and radiation terms dominate over the spatial curvature. and
the dynamics of the model  is well approxinintccl  by sot,tiiig  k = 0. In this limit,.  for
a matter-dominated universe, eqns. (2.12) and (2.16) give the solution

a(t) - t2/3 ; pm =& (MD,k=O) (2.19)

while for radiation-domination, from (2.12) and (2.18)

a(t) - t’/* ; pr =
3

32rGt2
(RD,k=O)  . (2.20)
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This clearly generalizes for a fluid with equation of state pf = ~pf:

-3(l+w) 1
Pf N a --t a(t) N t2/3(‘+w) ; pf =

67rGt*(l + 2~)~ *
(2.21)

In the next few sections we focus on the cosmologically recent matter-dominated
era, and subsequently turn to the radiation-dominated early universe.

3. Cosmological Parameters: Ho and to

The principal .observable  cosmological parameters of the FRW models are the
Hubble parameter, Ho = (b/a)o, the age of the Universe, to, the present (non-
relativistic) mass density relative to the ‘critical’ density of the spatially flat, Einstein-
de Sitter (k = A = 0) model,

a0 = PO/P&t = 8?rGpo/3H;  , (3.1)

the deceleration parameter, qo = -(i;a/&*)a, which measures the rate at which the
gravitational attraction of the matter is slowing down the expansion, and the con-
tribution of the cosmological constant to the present expansion rate, Aa = A/3Hi.
From the Friedmann equations, these parameters are related by

1=RI,+Xo--&
0 0

00
qo =m-2 x0 * (3.3)

For vanishing cosmological constant, fls - 1 determines the sign of the spatial cur-
vature: Qa = 1 for the spatially flat model (k = 0), and it is less than one for open
models.

The age of the universe is related to the other parameters through an expression
of the form Hoto = 1.02h(te/1010yr) = WOJO),  where  f is a function of order
unity. Thus the HubbEe  time Hc’ = 9.8 x lOghe yr sets the timescale for the age of
the universe, while the Hubble length cH{’ = 3000h-’ Mpc sets the lengthscale for
the present observable universe. For a matter-dominated universe with A = 0. f
falls monotonically with increasing Ro, and two useful limits arc f(0, 0) = 1 (~1 - i
for Ro = 0) and f( 1,0) = 2/3 (since a - t2/3 for 00 = 1). More generally, over the
range 0 < 00 2 1, k 5 0, S-20 - 3X0/7 5 1, an excellent approximation is13

Hoto N 2sinh-1(&l - fL)/%)
- 3 6-i

(3.4)

where
na = 00 - 0.3(&J + A,) + 0.3 .

11
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Figure 4: Evolution of the cosmic scale factor (scaled to its present value).

Some examples of the evolution of the scale factor a(t) are shown in Fig.4,
including three cases with A = 0: empty (00 = 0), flat (no = l), and closed
(Qo = 5), and one example of a flat (k = 0) model dominated by a cosmological
constant (X0 = 0.95 = l-00).  This figure displays the decrease in the expansion age
Hoto from unity as $20 is increased from zero. It also demonstrates that a significant
cosmological constant term can make Hoto large. The solution for the spatially flat
(k = 0) model with non-zero A has the form

a ( t ) flo 1’3 sinh2/3

a(to>= xo( >
(3.6)

where X0 + 00 = 1. At late times, it approaches the exponential de Sitter solution,

a(t) - efi’ . (3.7)

Much early effort was spent trying to measure or constrain the parameters qo
and & through the classical ‘cosmological tests’, such as the Hubble diagram, an-
gular size as a function of redshift, and galaxy counts as a function of redshift  and
apparent brightness. For example, to construct the Hubble diagram, one measures
the apparent brightness of a well-defined sample of objects (say, the brightest galax-
ies in clusters) as a function of the object’s redshift; for galaxies of fixed intrinsic
luminosity, the scaling of apparent magnitude with redshift  is a function of the
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cosmological parameters. Unfortunately, galaxies at large distances, where the dis-
tinction between model parameters becomes observable, are seen when they were
much younger than their nearby counterparts, so a model for galaxy luminosity
evolution must be used to interpret the results. Significant progress has been made
in understanding galaxy evolution, and there is hope that the effects of evolution
and cosmology might be disentangled in coming years. but these tests currently do
not place stringent universally accepted constraints on the cosmological parameters.
Recently, it has been pointed out l4 that the probability that a quasar at a given
redshift is gravitationally lensed by a foreground galaxy is a sensitive test for the
cosmological constant: in models with X0 > 0, one generally expects a higher lens-
ing probability. Based on surveys for lensed  quasars, the bound X0 ;5 0.8 has been
inferred in the case of a spatially flat (k = 0) universer5. For more on the standard
cosmological tests, the reader is referred to Peebles’.

3.1. Ho and the Distance Scale .
.

The Hubble parameter relates the observed recession velocity 21, or redshift  z of
a galaxy to its distance d: for v, << c, the recession velocity is v, = cz = Hod + up,
where up is the peculiar radial velocity of the galaxy with respect to the Hubble
flow, usually assumed to arise from gravitational clustering. Galaxy redshifts can be
measured quite accurately, so all the difficulty in determining HO resides in finding
reliable distance indicators for extragalactic objects at distances large enough that
the Hubble term dominates over the peculiar motion. Observed peculiar velocities
are typically of order 300 km/set,  so that distance measurements beyond 40 Mpc or
more (recession velocities above 4000 km/set)  are required for reasonable accuracy.

A wide variety of techniques has been used to establish an extragalactic dis-
t ante scaler6, and this is reflected in the spread of results for Ho, roughly 40 - 100
km/sec/Mpc.  Distance estimates made using methods such as the Tully-Fisher
relation between 21-cm rotation speed and infrared luminosity for spiral galaxies.
calibrated by observations of Cepheid variable stars in several uearby galaxies. have
yielded high values for the expansion rate, roughly Ho = 80f 10 km/sec/Mpc. Two
newer methods, planetary nebula luminosity functions17 and galaxy surface bright-
ness fluctuations’s yield values for Ho in this range as well, and are being further
developed. On the other hand, methods using Type Ia supernovae as standard can-
dles have yielded low values. Ho 2~ 7a0 f 10 km/scc/Mpc:. SNe la arc tllought,  to 1~
the explosions of white dwarfs which accrete matter from binary companions until
they reach the Chandrasekhar  mass, and there is some evidence that they form a
homogeneous class; they also have the advantage that they can be observed to great
distances. In the future, Hubble Space Telescope observations of Cepheids in other
nearby galaxies (and perhaps as far as the Virgo cluster) which are hosts to SNe In
or which can be used as Tully-Fisher calibrators should help improve the situation.
The recent discovery of a probable Type Ia supernova at z = 0.461g also raises hopes
that a sample of SNe Ia at t cv 0.5 could significantly constrain qo, provided the
dispersion in SNe Ia luminosities is sufficiently narrow.
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There are also a variety of methods being employed to measure the distances of
extragalactic objects directly, bypassing the extragalactic distance ladder built up
from Cepheids. Using the expanding photosphere method, Schmidt, Kirshner, and
Eastmanm  have determined the distances to 10 type II supernovae at large distances,
and find good agreement with the Tully-Fisher distances for these galaxies. Other
‘direct’ methods which hold future promise include measurement of the Sunyaev-
Zei’dovich effect. due to the Compton upscattering of CMBR photons by hot gas
in rich clusters21, and the differential time delay between images in gravitationally
lensed quasars’*.

3.2. The Age of the Universe, to

Three methods have traditionally been used to infer the age of the Universe,
to. Nuclear cosmochronology  is based on radioactive dating of r-process elements.
that is, heavy elements formed by rapid neutron capture, most probably in super-
novae. The element ratios Re/Os  and Ur/Th  generally indicate to = 10 - 20 Gyr’“,
with a large uncertainty due to the unknown element formation history (e.g., the
star formation rate over time). A second method involves the cooling of white
dwarfs: when lo&mass stars exhaust their nuclear fuel, they become degenerate
white dwarfi,  gradually  cooling and becoming fainter. The number of white dwarfs
as a function of luminosity drops dramatically for Lurd < 3 x 10T5&~,  suggesting
that there has not been sufficient time for them to fade below this value. Coupled
with models of white dwarf cooling, this’implies that the age of the galactic disk is
about to 2 10 f 2 Gyr24.

The most extensively studied technique for constraining to is the determina-
tion of the ages of the oldest globular clusters in the galaxy. When stars finish
burning hydrogen, they turn off the main sequence, characteristically reddening
and brightening. By observing the color-magnitude (color vs. apparent bright-
ness) diagram for a cluster, one can determine the apparent brightness of stars
in the cluster that are now leaving the main sequence. Knowing the distance to
the cluster then gives the absolute luminosity of stars at the turn-off. On the
other hand, stellar evolution theory relates stellar luminosity to the time a star
spends on the main sequence: crudely, a star turns off the main sequence when
a fixed fraction f N 0.15 of its initial hydrogen mass -44~1  = SHh/l has been con-
verted into helium (here S/f - 0.75 is the initial H ~:~~a.ss  frxction  of the star).
The conversion of H to He releases 6.4 x 10’s erg for every gm of H burned.
Thus, over the course of the main sequence, the total energy radiated by a star
is E oc fX~it4  N 105*fX~(  M/M,) erg, and its evolutionary lifetime on the main
sequence is T,, N E/L N 101’fX~(A4/A4~)/(L/L~)  yr. Now, stellar models indi-
cate that the relationship between mass and main sequence luminosity is roughly
L - .M4, yielding a main-sequence lifetime of T,,,~ = 1.2 x lO’O(  L/Lo)-3/4  years.
Thus, the measurement of the main sequence turn-off luminosity gives an estimate
of the age of the cluster. The turn-off luminosity in the oldest globular clusters in the
galaxy is slightly below that of the sun, yielding the age estimate t,, = (13 - 15) f 3
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Gyr25.  This argument is a gross oversimplification of the complex process of stellar
modelhng  and cluster isochrone fitting, but it gives a heuristic understanding of the
resulting age estimate. The largest source of error is apparently the uncertainty
in the distances to the globular clusters. It is hoped that observations with the
corrected Hubble Space Telescope mirror, successfully repaired in late 1993, could
reduce the uncertainty in t,, to as little 10%. There may also be residual systematic
model uncertainties associated with the initial hydrogen (or helium) fraction ,YH.
opacities, metallicity, etc.

We now turn to the final cosmological parameter of interest, the density of the
universe.

4. Cosmological Parameters: !2;20 and Dark Matter

It is convenient to parameterize  the mass density of the universe in terms of
the mass-to-light ratio, say in the VT band, Y’ = (M/L)/(A40/La).  Dividing the
present critical density,

PC = 3Hi/8~rG  = 1.88h2  x 10vBgm  cmW3  = 2.8 x 10”h2n/Io  MpcW3 (4.1)

by the observed mean luminosity density j, N 2.4 x 108hLo  Mpcv3, the critical
mass-to-light ratio for the Rs = 1 universe is Yc N 1200h,  and the cosmic density
parameter can be expressed as 00 = 8 x 10e4  h-‘Y. The mass-to-light ratio in
the solar neighborhood’ is approximately Y = 5, while the central cores of ellipti-
cal galaxies yield Y N 12h, so the density of luminous matter (that is, of matter
associated with typical stellar populations) is inferred to be Rlum - 0.007. How-
ever, it is well known that the luminous parts of galaxies are not the whole story:
there is strong evidence from flat spiral galaxy rotation curves, from a variety of
observations of galaxy clusters, and from large-scale peculiar motions that there is
a substantial amount of dark matter in the universe.

4.1. Dark matter in galaxies

An example of this phenomenon for galaxies is shown in Fig. 5, which shows a
model for the rotation speed of the galaxy as a function of radius. The three lower
curves show the contributions from the luminous components (two bulge compo-
nents and the disk”). Clearly, they cannot account for the observed rotation speed
beyond a few kpc from the galactic center. To match the observations (taken from
the compilation in ref.27),  one assumes in addition a quasi-spherical distribution of
dark matter, called the halo, with a density profile of the form

ml(r) m la2 -I- r2 ’ (4.2)

In Fig. 5, the adopted halo core radius is a = 3.5 kpc. On large scales, the halo mass
scales as Mb(r) - r, yielding a flat rotation curve, vz = Gh/l(r)/r  + 220 km/set
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Figure 5: Rotation curve for our galaxy: an average over a number of different
observations (solid points) is shown with a model that includes luminous and dark
m a t t e r .

for the model shown in Fig. 5. Clearly, eqn.(4.2)  cannot extend to arbitrarily large
radii, because the enclosed mass would diverge; the halo is presumably truncated by
tidal or other effects at large r. The observation of high proper motion stars in the
solar neighborhood (presumably bound to the Galaxy) implies that the local value
of the galactic escape velocity exceeds 450-500 km/set,  and this can be used to
place a lower bound on the halo truncation radius. If the halo is sharply truncated
at TV, the escape speed V, at T < rt satisfies”*

uz = 2$(1 + ln(rt/r)]  . (4.3)

Using V, > 500 km/set at the solar radius T = Re = 8.5 kpc and V, = 220 yields
rl X 40 kpc and a total galaxy mass Mga[  X 5 x lO”i&. Comparing with the
luminosity of the disk plus the bulge, Lgol = 1.1 x 10’“L,3,  in the V lxmd. this
implies that the total mass-to-light ratio for the Milky Way is at least YA,fw  ;2 35.
This is consistent with the requirement that distant globular clusters and satellite
galaxies are bound to the Galaxy, as well as with mass-to-light ratios inferred from
more extended flat rotation curves in other spiral galaxies27.  If these systems are
typical of the universe, we infer 00 X 0.02/z-’  for the matter associated with galaxy
halos.

It is interesting to compare these values with the baryon density 0, inferred from
primordial nucleosynthesis (see the lectures by Schramm  and Walker), whicll2g 3o
has been restricted to the range 0.010 < R&* < 0.015. Comparison with 12/,,,,
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above suggests that some or most of the baryons are dark or in underluminous
populations. Furthermore, comparison with the escape speed and rotation curve
bound Rs 2 O.O2h-’  shows that baryons could constitute some or all of the dark
matter in galaxy halos, depending on their extent.

One possibility for dark baryons in halos would be degenerate brown dwarfs,
substellar (M < O.OSJ4@)  objects which did not reach sufficiently high tempera-
ture to burn hydrogen. Currently several independent groups are searching for halo
dwarfs (which have been dubbed MACHOS, for massive compact halo objects); the
signature is a microlensing event, in which a background star, say in the LMC or the
bulge of the Milky Way, symmetrically brightens and fades as a MACHO passes
near its line of sight.31 Although they are distinguishable from ordinary variable
and flare stars by the time symmetry and achromaticity of the light curve, such
microlensing events would be intrinsically rare-the probability that a given back-
ground star is lensed is r - (TJ~/c)* - 5 x 10m7, so a large number of stars must
be accurately monitored. The American-Australian MACHO project currently ob-
tains CCD photometry for several million stars per night, and has discovered many
periodic variable stars. The French EROS and Polish OGLE groups are also mak-
ing progress. In September and October 1993, all three groups reported the first
evidence for microlensing events by objects in the Galaxy32*33*34.  The most prob-
able masses for the lensing objects are roughly in the range 0.01 - 0.5Mo. As
data is accumulated over the next few years, we will be able to infer information
about the contribution of MACHOs  to the Milky Way halo. It is also worth noting
that microlensing in external galaxies has beeu sought previously by monitoring
the brightness of gravitationally lensed  QSO images over time. In particular, a mi-
crolensing event in the lensed quasar 2237+0305  has been establislled,35  but in this
case it is difficult to establish the MACHO mass, since the microlensing probability
is closer to unity.

4.2. Dark matter in clusters

Moving to larger scales, for clusters of galaxies the traditional dynamical method
of estimating cluster masses and mass-to-light ratios, first used by Zwicky who
discovered the ‘missing mass’ problem in the 1930’s,  has been to apply the virial
theorem to measured cluster velocity dispersions, A&,, oc (v’)/(R$),  where (v*)
is the velocity dispersion of the g&txi~ h it dllstcr ;~lltl  R;j i s  the separation
between them. This method assumes that galaxies trace the cluster mass and
that the galaxy velocity distribution is isotropic, both of which may not be good
approximations. Independent information on the dark matter distribution in the
inner cores of clusters comes from the giant luminous arcs and arclets, high redshift
galaxies gravitationally lensed by foreground clusters 36 37. These arcs are formed
when a galaxy is nearly imaged into an Einstein ring. Measurements of the cluster
and background galaxy redshifts yield an estimate of the cluster mass within the
impact parameter of the lens; for most of the cases studied, these estimates are in
reasonable agreement with the mass-to-light ratios inferred from the virial theorem,
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but it should be noted that the arc observations probe only the inner few hundred
kpc of the clusters. (Work is presently being done to extend this idea to map clusters
on larger scales, by looking for more minute statistical distortions in the alignments
of background galaxies.) Typical inferred cluster values are Y N 100 - 250h,  which
would imply R. N 0.1 - 0.2. Since clusters are rare objects, occupying a very small
fraction of the universe, one expects this to be a lower bound, in which case some
form of non-banzonic  dark matter is probably required, given the limits on SZB above.

X-ray observations, most recently by the ROSAT satellite, 3s have begun to map
the density and temperature profiles of the hot gas which permeates many clusters.
Since the gas is in hydrostatic equilibrium, it can be used to trace the cluster mass
distribution (including dark matter) directly,

W(r) dlnn  + &rT
Mot(r) = --G

(
- -p dlnr dlnr )

(4.4)

where ,Y is the mean molecular weight of the gas. and n(r) and T(r) are the gas
density and temperature. Cluster masses inferred from X-ray observations are gen-
erally comparable to but -30% less than virial estimates. Consistent with this,
the X-ray measurements indicate that clusters are surprisingly baryon-rich, in the
sense that the gas constitutes typically 5 - 10h-3/2%  of the inferred binding mass
within approximately 1 hD-1 Mpc of the center of a rich cluster like Coma. (More-
over, the dark matter tends to be mofe centrally concentrated than the gas out to
this scale, suggesting that the gas fraction of the whole cluster is at least as large
as the value above. 40) If this ratio is representative of the baryon mass fraction of
the universe, then the nucleosynthesis bound on Q* would imply 41 the upper limit
Ro 6 O.l5h-‘I*.  (Including the baryon stellar component in cluster galaxies only
strengthens this limit.) This has been taken as evidence against the universe having
closure density (no = 1) and would require advocates of inflation (which implies
k = 0) to fall back on a cosmological constant or some other smoothly distributed
component. The other possibility would be to looseu the nucleosynthesis bounds
on flB through some non-standard scenario such as inhomogeneous nucleosynthesis,
but the upper bound on G?B is not raised sufficiently in this model to get around
the argument above. One should perhaps be cautious about inferring the universal
baryon fraction from a rich cluster like Coma. In particular, clusters with higher
X-ray temperatures (and therefore larger total masses) may have a larger fraction
of their total mass in gas. ‘lo This trend, coupled with the steeply falling distribution
function of cluster temperatures, dn,/dT  - Ts5 for 3 < kT < 10 keV, suggests that
the mean gas (and baryon) fraction may be substantially below the value for Coma,
since the mean is dominated by the more numerous cooler clusters (IcT&m(l  ‘Y 7
keV). This would raise the derived upper bound on Rs closer to unity and suggests
that massive clusters like Coma may not be representative of the baryon fraction
of the Universe. On the other hand, N-body simulations of cold dark matter with
baryons*i indicate that the baryon fraction in a Coma-size cluster should be repre-
sentative of the mean, so the present situation is somewhat confusing.
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4.3. Large-scale flows

Moving to still larger scales, the deviations from the Hubble flow have been
used to infer the cosmic density over scales  of order 50h” Mpc. The basic idea is
to compare samples of the density perturbatiqn field and the peculiar velocity field
covering the same volume;42 assuming they arise gravitationally, the proportionality
between them depends on the rate of growth of the density fluctuations. which in
turn depends on 00. On very large scales, as discussed above, the rms density
fluctuations are small, so linear perturbation theory away from the FRW spacetime
is a reasonable first approximation (see the lectures by Scherrer). In this case one
finds the relation

v.i&= - H&p6 9 (4.5)
where the density field b(Z) = (p(Z) - p)/& and the perturbation growth rate
enters through dlnb/dlna  N Q”e6. If one expresses distances d in terms of their
equivalent Hubble velocities, 21 = Hod, then Ho drops out of Eqn.(4.5), so the
uncertainty in the Hubble parameter does not undermine this method. A number
of different approaches have been used to extract ito in this way, and they have
all given consistently high answers, Ro 2 0.5. The topographic correlation between
the observed gal& field and the density field inferred from galaxy peculiar velocity
surveys suggests that galaxies do broadly trace the mass distribution on large scales,
in the sense that more galaxies are found in regions of high mass density (that is,
high V - C”), but the galaxy distribution may be ‘biased’ with respect to the mass.
In the simplest linear bias model, the smoothed galaxy and mass density fields
are assumed to be proportional, &,1(Z) = bga16(Z), where bg,l is the bias factor,
taken to be constant for a given class of galaxies. Since &I is what is observed,
the comparisons based on Eqn. (4.5) actually constrain the combination C$f6/bg,l,
where the bias factor refers, e.g., to galaxies selected from the IRAS catalog. Recent
determinations have found ni*6/b,,I  - 1. For a bias factor of order unity, this is
consistent with !20 = 1, which is pleasing to theorists and also buttresses the case
for non- baryonic .dark matter. It is well to keep .in mind, however, that biasing
is presumably a complex process associated with the non-linear stages of galaxy
formation, so that the proportionality of the galaxy and density fields may be non-
linear and/or scale-dependent. In addition, even with substantial smoothing of
the density field, the perturbation amplitude in many regions is not small, and
correctious  to t,lle  linear theory must be taken into account.

A summary of typical estimates of the density parameter ou different scales is
given in Table 1.

4.4. Non-baryonic Dark Matter

If Ro > 0~, as the dynamical observations on scales larger than clusters sug-
gest, some form of non-baryonic matter must be invoked to make up the balance.
Moreover, since this matter must be dark (00 >> Qum), it is natural to consider
weakly interacting particles as candidates. It is convenient to distinguish two broad
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Table 1: Estimates of the cosmic density parameter Ra.
System Y 00

Luminous matter in galaxies 5 - 12h 0.007
Galaxy halos 35 O.O2h-'
Clusters 250h 0.2
Large-scale flows

. .
0.5 -1

classes of non-baryonic dark matter, hot and cold, on the basis of their clustering
properties. The prototypical hot dark matter candidate is a light neutrino with
mass m, N 20 eV (see Sec. 6.3). Since they are relativistic (m, s T) until rela-
tively recent epochs, light neutrinos would free-stream out of and damp out density
perturbations up to the scale of galaxy clusters. Galaxies would form after clusters
via fragmentation (‘top down’). Due to phase-space constraints43,  light neutrinos
would not cluster significantly on the scale of galaxies: baryons would constitute
the predominant dark matter in galaxy halos, while neutrinos would dominate in
clusters. Cold dark matter, on the other hand, is defined to have negligible free-
streaming lengthLit  clusters on all scales. In cold dark matter models, structure
generally forms hierarchically, with smaller clumps merging to form larger ones
(‘bottom up’). For this reason, many (but not all) theorists since the early ‘SO’s
have tended to prefer cold over hot dark matter, but it is worth noting the recently
surging popularity of a mix ‘n match scenario: a combination of 70% cold and 30%
hot dark matter (say, with my N 7 eV) produces a favorable spectrum of large-scale
density perturbations in the context of inflation, with some apparent advantages
over pure cold dark matter.

The theoretically favorite candidates for cold dark matter are weakly interacting
massive particles (WIMPS), with masses generally in the range 20- 150 GeV, and the
axion, an ultra-light pseudoscalar with a mass of order low5 eV. The most attractive
WIMP candidate is the neutralino, the lightest supersymmetric fermionic partner of
the standard model bosons; its weak annihilation rate in the early universe naturally
leaves it with an abundance comparable to the present critical density. The axion
is the pseudo-Nambu-Goldstone boson associated with spontaneous breakdown of
a global U(1) symmetry (the Peccei-Quinn symmetry) introduced to explain why
the strong interactions conserve CP. The global symmetry is spontaneously broken
at some large mass scale fp~, through the vacuum expectation value of a complex
scalar field, (a) = fpQ exp(iu/fpQ)/&  At energies below the scale fpQ, the only
relevant degree of freedom is the massless  axion field a, the angular mode around
the bottom of the @ potential. At a much lower energy scale, hQc~  N 100 MeV, the
symmetry is explicitly  broken when QCD becomes strong, and the axion obtains a
periodic potential of height N Atco. In ‘invisible’ axion  models with Peccei-Quinn
sde fPQ N lo’* GeV, the resulting axion mass is m, N &&/fpQ - loss eV
and fl, N 1. Although light, invisible axions interact so weakly, with cross-section
CT N l/fjiQ, that they were never in thermal equilibrium: they form as a cold Bose
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condensate.
Accelerator searches for neutrino  mixing and beta-decay experiments on neu-

trino mass should provide useful constraints on the possibility of neutrino dark
matter. Active experimental efforts are also underway to detect both WIMPS and
axions.  Direct WIMP detection looks for the signals produced when a halo WIMP
collides with a nucleus in a kg-size cryogenic crystal, depositing of order 10 keV
in ionization and phonons (detector schemes based on scintillation and excitations
of superfluids and superconductors are also being developed). Indirect WIMP de-
tectors search for high energy neutrinos produced when WIMPS  annihilate in the
Sun and the Earth; large undergrqund or underwater detectors currently in place
or under development with sensitivity to WIMP annihilations include Kamiokande,
MACRO, AMANDA, and DUMAND. Accelerator searches for supersymmetry also
will constrain the neutralino parameter space. A large-scale axion search based at
Livermore, expected to come on-line in 1994, will search for resonant conversion of
halo axions to microwave photons in a cavity with a strong magnetic field. A scaled-
up version of an idea originally proposed by Sikivie, this detector should approach
the cosmologically interesting region of axion couplings for the first time44.

Finally, given the paucity of direct evidence for dark matter, it is probably
healthy to keep ati open mind to alternatives. While it is natural to ascribe flat
galaxy rotation curves and large cluster velocity dispersions to unseen matter,
Milgrom45 and others  have argued that they may instead signal a breakdown of
Newton’s law of inertia at very low acceleration. The extent to which Milgrom’s
modified Newtonian dynamics (MOND) accounts for all the phenomena normally
imputed to dark matter is controversial, and a full theory with which one could
explore cosmology has been lacking. Nevertheless, at a minimum it provides a use-
ful challenge to the accepted dogma. On a relatively more conservative side, the
possibility that tl?e dark matter interacts by other long-range forces in addition to
gravity has recently been explored.63  Such interactions are significantly constrained
by galaxy and cluster observations, but could nevertheless have interesting impli-
cations for structure formation and biasing.

5. Cosmological Parameters: Taking Stock

With this brief survey in hand, it is useful to pause and place these numbers for
the cosmolo~~ical  parameters in theoretical context. If all cxtciideci pcriocl of inflation
took place in the early universe (see below), then the spatial geometry should now be
observationally indistinguishable from k = 0. If the cosmological constaut  vanishes,
from Eqn.(3.2)  spatial flatness implies Szo = 1 (with the concomitant requirement
of non-baryonic dark matter), and thus to = 2/3Ho  = 6.5h-’ x 10’ yr. This is
uncomfortably low compared to globular cluster ages unIess h S 0.5 (to X 13 Gyr)
and definitely problematic unless h < 0.65 (to > 10 Gyr), still on the low side of the
Ho observations. However, a non-vanishing X0 is certainly allowed at some level by
observations and has sporadically come into vogue, most recently to alleviate both
this age problem and the large-scale power problem for inflationary cosmology. For -
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example, in a flat model with 0s = 0.25, X0 = 0.75, Eqn.(3.4)  gives to N l/Ho =
9.75h-’  Gyr, consistent with the lower bound tsc > 10 Gyr for the entire observed
range of HO, and yielding a healthy, to > 13 Gyr-old universe for h < 0.75. This
lower value of !Je is consistent with the dynamical mass estimates from clusters, but
somewhat below the recent estimates from large-scale flows. Since there is currently
little theoretical guidance as to why IX 0 is as small as it is, and no firm proof that it1
should vanish? it is probably best to keep an open mind. althougli  the fact that we
would be living just at the epoch when Qo is comparable to X0 might seem to beg for
explanation. The third possibility is that theoretical prejudice is wrong, and that
we live in an open, low-density, perhaps purely baryonic universe with negligible
A, in which case the globular cluster age range is also compatible with somewhat
larger values of HO. The challenge in this case is to explain the large-scale flows
(or attribute them to systematic distance errors) and to form large-scale structure
without violating CMBR anisotropy constraints. In this case, it also would be an
odd coincidence that we live just at the epoch when the curvature term in (3.2) is
becoming appreciable compared to the matter term.

6. The Early Universe

We have seen that the FRW models provide a natural framework for under-
standing observations of the universe on the largest scales, in particular the Hubble
law. Aside from the Hubble expansion, two other observational pillars support the
temple of the standard cosmology: the thermal spectrum of the CMBR and the light
element abundances. Both direct our attention backward to much earlier epochs in
the history of the universe: the hot big bang.

6.1. The Cosmic Microwave Background

The 2.7 K cosmic microwave background radiation, discovered thirty years ago.
has since been shown to be remarkably isotropic (to roughly one part in lo5 on angu-
lar scales larger than a few arc minutes) and to have an exactly thermal blackbody
spectrum to within the experimental errors. The spectral measurements cover the
range of photon wavelengths from roughly 0.05 - 50 cm, while the most impressive
verification of the Planck spectrum comes from the recent COBE FIRAS observa-
tions in the range 0.05 - I cm. The measured FIRAS  flux vs. frequency” is showu
in Fig. 6; it is indistinguishable from a Planck spectrum with a temperature of
T = 2.726f0.010  K. The error bars on the points are too small to see, so they have
been multiplied by a factor of 100 in the figure.

The blackbody nature of the CMBR is indicative of a medium that has relaxed
to thermal equilibrium. However, there are strong grounds for believing that the
recent universe is transparent to CMBR photons, that is, that the mean free path
for microwave photon scattering is much longer than the present Hubble length: (i)
we observe radio galaxies as point sources out to redshifts of order z N 4, which re-
quires microwave transparency out to this scale; (ii) even postulating a fully ionized
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Figure 6: CMBR brightness vs. frequency (inverse wavelength) measured by COBE
FIRAS.

intergalactic medium with closure density (fligm N l), the mean free time for Comp-
ton scattering is longer than the Hubble time back to a redshift  z X 10. Therefore,
the CMBR is not now in thermodynamic equilibrium and could not have been ther-
malized at recent cosmological epochs. The standard explanation is that the CMBR
is a remnant of a much earlier hot, dense phase of the. universe when the matter
and radiation were in equilibrium. Indeed, running the Hubble expansion backward
in time, this is just what one would expect: as the matter is compressed, it heats
up, becoming a dense, ionized plasma which efficiently scatters and thermalizes the
radiation on a timescale much shorter than the expansion timescale.

This argument suggests that the early universe can be accurately described as a
dilute, adiabatically expanding gas of particles and radiation in local thermal equi-
librium, uniquely characterized by the instantaneous temperature T(t). While this
may reflect conditions over much of the early history of the universe, we know it is
not the full story, because a gas in thermal equilibrium is featureless and structure-
less, and the observed universe is not so boring. Although thermal equilibrium is a
good starting point, the interesting epochs in cosmic history-the ones which leave
potentially observable signatures or relics, such as the light elements, the baryon
asymmetry, and particle dark matter-are those in which a particle species i goes out
of thermal equilibrium, because the rate of interactions keeping it in equilibrium,
I’;( falls below the expansion rate H(t). This happens at a temperature 5”~ defined
bv

TF is called the freeze-out temperature: at temperatures T < TF, the particle’s
comoving number density is fixed, n; N a-3. Thus, the study of the early universe
requires both equilibrium and non-equilibrium thermodynamics (the Boltzmann
equation). For completeness, it is worth noting that there may also be particle relics,
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such as magnetic monopoles and axions, which were never in thermal equilibrium.
It is helpful to have some characteristic numbers for the CMBR. For ultra-

relativistic particles in kinetic equilibrium at temperature T, the energy density
is

and the number density

?? I 1 bosons
Pi = =g;P x 7/B fermions

n. c(3)t-- FgiT3 X

(6.2)

(6.3)

where gi is the number of internal degrees of freedom, and the Riemann zeta function
C(3) z 1.202. For blackbody radiation at To = 2.73 K, the present CMBR energy
density is pr = 4.8 x 1O-34  gm/cm3, and the photon number density is n, = 420
cmm3. For comparison, the present baryon density is nB = pB/nz, = 1.12 x 10-5fls12”
cmm3, and the baryon to photon ratio is

+ = 2.7 x 108RBh2 .

In the early universe, baryons and photons are kept in thermal contact by Comp-
ton scattering, e-y + e-y. As the universe expands and cools, eventually it be-
comes energetically favorable for the ionized plasma to recombine to form neutral
hydrogen, e- + p --) H + y. When this happens, the density of free electrons drops
precipitously, and the Compton scattering rate per photon, 7T = negComp,  falls be-
low the expansion rate H; as a result, the photons decouple (freeze out) from the
matter. In the absence of subsequent reionization of the matter, the photons will
have travelled freely since that epoch, which is therefore called the surface of last
scattering.

It is a useful exercise to estimate when hydrogen recombination and photon
decoupling took place. Since the recombination rate is initially rapid compared to
the expansion rate, the baryons and photons maintain ionization equilibrium. The
densities of the non-relativistic baryons in thermal equilibrium are

.

ni = gi (!!$I)3’2exp  (pi ,“i) , (6.5)

where i = e,p, H, and pi are chemical potentials. Defining the ionization fraction,
X = np/(np + nH), and using chemical equilibrium to relate the chemical potentials,
I$+Pe = PH, we arrive at the Saha equation for the equilibrium ionization fraction,

1 - Xeq = 4&(3)
x:9

\/jT q($)““exP(p,  ’ (6.6)

where B = m, + mP - mH = 13.6 eV is the binding energy of neutral hydrogen.
Using (6.4) for 77 and taking RBh2 N 0.01 from nucleosynthesis,  one finds that -
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xe9 drops rapidly away from unity-that is, the hydrogen effectively recombines-
at a temperature T,,, N 0.3 eV. Since the temperature scales as T = 2.73(  1 + r)
K, this corresponds to the epoch z,,~ N 1300. This result is just what one expects:
recombination takes place when there are too few photons left in the high-energy tail
of the thermal distribution to ionize the hydrogen. This happens at a temperature
somewhat below the binding energy of hydrogen. because the number of photons per
baryon is so large (17 << 1). Once .re9 drops appreciably below unity. the Compton
rate per photon, rr = xqnraCmp  soon falls below the expansion rate, and the
photons decouple at a redshift  &&,c ‘u 1100. From (2.19), this corresponds to a
decoupling time t&c = 5.6 x 1012h-’  set z lBO,OOOh-’ yr (for Re = 1).

If photons decoupled at such an early epoch, why does the CMBR still have such
a precisely thermal spectrum? The simple reason is that the expansion preserves
the blackbody thermal spectrum even in the absence of thermalizing interactions.
At temperatures T > Tdec, the photons are in kinetic equilibrium, with a Bose
distribution function,

f(P,t < tdec) = ’exp(E/T)  - 1 ’ (6.7)

where E = IpI. After decoupling, the photons are free particles, their energies just
redshifting with the expansion, E(t) = J??(i&)a(&.,)/o(t).  However, since they are
no longer interacting,. the occupation number must be conserved for each momen-
tum state. As a result, the distribution function maintains the form (6.7): with
effective temperature given by T(t) = T(tdec)(a(tdec)/a(t));  since this holds for each
momentum state, the spectrum remains thermal.

In fact, the issue of the preservation of the thermal spectrum is more subtle than
this argument suggests, and the spectrum observation by FIRAS a more powerful
too148,  because we have not taken into account the possibility that some physical
process could distort the spectrum away from the form (6.7). For example, annihi-
lating or decaying elementary particles or exploding black holes could release energy
into the photon-baryon plasma that is not completely thermalized by the time of
photon decoupling. Alternatively, after decoupling, an early generation of stars,
quasars, or active galactic nuclei might release enough energy to heat up and reion-
ize the baryons, which would then scatter off the CMBR and distort the spectrum.
The kind of spectral distortion produced depends on the epoch when such a process
releases energy into the photon-baryon system. Energy released into the baryous  at
z,=~ X 3 x lo6 is completely thermalized by Compton scattering and bremmstrahlung
emission: the photons relax to a new equilibrium distribution at a higher temper-
ature, leaving no distortion. Energy released in the interval lo5 s L,,I 6 3 x lo6
cannot be completely thermalized, because photon production becomes inefficient;
in this regime, multiple Compton scattering leads to a Bose-Einstein photon distri-
bution,

f(P) = l
exp(+)-1 ’

(6.8)
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where the chemical potential ~1 is related to the energy density injected, Ap, by
WP7 = 0.7p/T. The FIRAS results shown in Fig. 6 can be translated into the
bound Ip/Tj < 3.3 x 10e4, severely restricting the energy density injected at such
times. If energy is released into the electrons later, at z&c = lo3 < t,,l < 105, e-y
scattering produces a Compton y-distortion which can be expressed as a frequency-
dependent temperature,

bT( u) u eylT + 1
N

Teu,T-l-4

-2y for u/T << 1
yu/T for u/T > 1 *T (6.9)

The y-parameter is related to the energy release by y = Ap/4p,. Eqn.(6.9)  states
that Compton scattering by hot electrons at T’ > T7 moves photons from low to
high frequency, depleting the spectrum in the low-frequency Rayleigh-Jeans region
and enhancing it in the Wien part of the spectrum. Comparison with the data in
Fig.6 yields the observational constraint y < 2.5 x 10s5.  These bounds together
severely constrain any model in which energy is released between roughly one and
300,000 yr after the big bang.

6.2. The Radiation Era

Summing eqn.(6.2)  over all effectively massless  species in equilibrium, we can
define the. total radiation energy density by

n

Pr = GgsT’ , (6.10)

where g,(T) counts the number of effective relativistic Bose (B) and Fermi (F)
degrees of freedom, which may have different effective temperatures,

g*(T)=~gi(~)4+~~gi(~)4  . _ (6.11)
i=B t=F

As the universe expands and cools, the function g,(T) decreases whenever T drops
below the mass mi of a particle species. For the photon and assuming 3 massless
neutrinos, it is currently g*(To) = 3.36; above the e+e- mass threshold, g-(1 -
100MeV) = 10.75: and at temperatures above the masses of all particles in the
standard eiectroweak  model, y,(T > 300GeV) Z 100.

From (G.ll), and assuming there are no exotic heretofore unknown relativistic
particles, the present radiation energy density is p,(to)  = 8.1 x 1O-34 gm/cm3.
Comparing with the critical density in eqn.(4.1),  the radiation makes a negligible
contribution to the present density,

i-2 r = 4.3 x 10-5h-2  , (6.12)

confirming our assumption in Sec. 2 that the present universe is matter-dominated.
On the other hand, since pT/pm - a-‘, the universe was radiation-dominated at
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early times. From (6.12),  the transition from radiation to matter-domination (pm =
pt) occurred when

TI+ zcq = 2 = 3 = 2.3 x 104i2,,h2  ,
To

(6.13)

which corresponds to a photon temperature Teq = 5.3R&* eV. For Ro = 1, this
happened when the age of the universe was t,, = 4.4 x 10”hs4 sec. Note that for
00 = 1 >> Rg, the universe becomes matter-dominated before (but not long before)
recombination.

During the radiation-dominated (RD) epoch (t < teg), the spatial curvature term
in the Friedmann equation can be neglected, since it scales with a more slowly than
pm or pr and we know that it is at most comparable to the matter density term
today. The RD era solution is therefore described by (2.20). Combining (2.20) and
(6.10), we can relate the temperature and expansion rate in the RD epoch:

TZ
H = 1.66g112-  .

MPi

Since H = 1/2t  from (2.20),  we can also relate temperature and age:

- 2

t
0.3Mp1 2 . 4=
g?2p = p

set .

(6.14)

(6.15)

Table 2: Thermal history of the universe.
T( GeV) t(sec) Event
10’9 1o-43
10’5
103
lo2
0.2
1o-3
5 x 10-4
r x 10-j
1O-Q
3 x 10-10
6 x lo--l3
3 x lo-l3

10-3s
10-‘2
lo-‘0
10-4.5

1
4
200
5 x 10”
10’3
10’7
4 x 10’7

Planck  era: quantum gravity
Grand unification: inflation, topological defects
Supersymmetry, technicolor
Electroweak transition: W(2)  x U(1) -+ U(l),,
Quark-ha&on transition; chiral  symmetry breaking
Neutrino decoupling
e+e- annihilation
Big Bang nucleosynthesis
Matter-radiation equality
H recombination; photon decoupling
Non-linear structures form
Chicago Bulls three-peat
(note: this was given as a prediction at TASI ‘93)

A timeline  for the early universe with some important epochs delineated is shown
in Table 2. The CMBR probes conditions back to the time of photon decoupling.

-
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while the light element abundances probe conditions at temperatures comparable
to nuclear binding energies, T - MeV. Going backward in time, QCD predicts that
chiral  symmetry should be broken at a temperature of order 100 MeV. At about that
time, quarks should also become confined inside hadrons, but it is not clear if this is
a smooth (second-order) transition or a first-order transition involving the release of
latent heat and the nucleation of hadron  bubbles. If the quark-hadron transition is
first-order, the resulting inhomogeneous baryon distribution might leave observable
signatures in the light element abundances.

Going to earlier times, the electroweak symmetry should be restored at a t&n-
perature of order 100 GeV. The dynamics of this transition is currently an area of
active investigation: if it is a first-order transition, it is possible that the resulting
non-equilibrium conditions were ripe for the generation of the baryon asymmetry.
If baryons and anti-baryons had been present in exactly equal numbers in the early
universe, their annihilation would eventually have driven the baryon to photon ra-
tio down to a value many orders of magnitude smaller than (6.4). Thus, wheu the
baryons were relativistic, there must have been a small asymmetry between the
density of baryons and anti-baryons, nB/nb  = (nb - nh)/nb N 7. As first pointed out
by Sakharov, the generation of such a baryon asymmetry requires baryon-number
and CP-violating interactions as well as a departure from thermal equilibrium (since
nb = n(; in equilibrium). It is currently thought that baryogenesis takes place at the
GUT or electroweak eras.

Going back earlier than lO-‘O set, we must invoke physics beyond the stan-
dard electroweak model, and the events become increasingly speculative. Particle
physics models suggest there may be new physics lurking at the TeV scale-perhaps
supersymmetry, technicolor,  or various extensions of the standard model. In the
simplest grand unified theories, the strong and electroweak interactions are unified
(the symmetry between them restored) at an energy scale of order 1015 GeV. A cos-
mological phase transition at that epoch might lead to inflation or to the generation
of topological defects such as monopoles, cosmic strings, or textures; the resulting
density and gravitational wave perturbatioris  produced could provide the seeds for
large-scale structure and leave a signature in the CMBR anisotropy. Classical cos-
mology runs into a wall at the Planck era, t N 1O-43 set: at that epoch, quantum
fluctuations in the spacetime metric are expected to be large, and a quantum theory
of gravity is required. If super-strings provide the fundamental description of nature.
inherently stringy effects would become important around that scale.

6.3. Relic Neutrinos and Hot Dark Matter

As an interesting example of interactions freezing out and leaving a relic species,
consider light neutrinos. The cross-section for v,e- + v,e- scattering through W
and 2 exchange is of order 0, N c~ip~/(p~-M~)~, where (Y, is the weak fine structure
constant, M N A/r,,  Ali, is the gauge boson mass, and p are the fermion  momenta in
the center of mass. First consider the very early universe, at temperatures T >> M.
In this case, the momenta p N T > M, resulting in a cross-section (a~) w c$/T2. -
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Since the particle density n - T3, the interaction rate is l?” - aiT. Comparing
with the expansion rate, H - p/Mpl, we find that the interaction rate is larger,
I’,/H > 1, at temperatures T S a$Mp, - 10’” GeV. If we begin our consideration
of cosmology at the Planck era, T - 10lg GeV, this tells us that gauge interactions
are initially out of equilibrium, but local thermal equilibrium is a good working
assumption below about 10 I6 GeV As a result, inferences about physics near the.
Planck scale which rely on equilibrium thermodynamics should be viewed with
skepticism.

The situation changes when the temperature falls below the gauge boson masses,
T < :%I. In this regime, we have M >> T - p >> m,, and the ve- cross-section
becomes (av) - azT2/M4 - G$T2, where GF is the Fermi constant, GF N lo-
GeVq2.  Comparison with the expansion rate now gives I’,/H - G2FL11plTB. which
falls below unity at the neutrino freeze-out temperature, Tr z 1 MeV. For light
neutrinos, we have TF >> m,, so the neutrinos are ultrarelativistic, with a density
comparable to photons, when they freeze out; such particles are called hot relics, as
opposed to cold relics, which are non-relativistic (TF S m) wheu they freeze out.

Consider the implications of neutrino decoupling for the present neutrino density.
We will make use of the fact that, in thermal equilibrium, the total entropy in a
comoving volume is conserved by the first law of thermodynamics, S = se3 =
constant, where the entropy density is

P-+P
S=T *

(6.16)

Soon after the neutrinos decouple, the electrons and positrons annihilate, e+e- +
YY, at T N me - 0.5 MeV, converting their entropy into photons. Since this takes
place after v freeze out, the neutrinos do not partake of the entropy boost. Before
annihilation, the e+e- entropy is se = 4 x (7/8)  x (2r2/45)T3,  and the photon entropy
% = 2 x (2?r2/45)T3.  After annihilation, the photon entropy hns been increased by
the factor I

SY 2+7/2 1 1-= =-
% 2 4 ’

(6.17)

which means the photons are heated with respect to the neutrinos,

T’ sl, 1’3Y=
0

- 1 . 4  .
Tv .yy -

(6.18)

Using the present CMBR temperature from COBE, this implies a present neutrino
temperature of T, = 1.95 K, and a neutrino density (for a single neutrino species)

n, = (3/4)(Tv/T,)3n,  = (3/11)n, = 115 cms3 . (6.19)

We can also use this to calculate the present energy density in radiation: assuming
all three neutrino species are massless, we have

9.v-b) = (6.20)
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which leads directly to (6.12).
It is possible that one or more of the neutrinos is massive, the current experi-

mental neutrino mass limits being m, < 9 eV, m+ < 270 keV, m, < 35 MeV. If a
neutrino is massive and stable (or long-lived compared to the age of the universe),
it could contribute more substantially to the density of the universe. From (6.19)
and (4.1). one finds

\ I I

f&h” = F = 2 eV .
c

(6.21)

From sec. 5, neutrinos could provide the dark matter and close the universe, Q, = 1,
if h 2~ 0.5, which would require a mass m v N 20 eV. While larger than the u, mass
limit, either the muon and tau neutrinos could have masses in this range; moreover.
even an electron neutrino at the upper end of the experimental maSs  limit would
contribute substantially to the energy density.

If neutrinos are the dark matter, an interesting argument due to Tremaine  and
Gunna3  shows that they cannot cluster in galaxies, so they would not provide the
dark halos of the kind shown in Fig. 5. To see the point, suppose neutrinos were
clustered in the halo of a galaxy like the Milky Way. Their number density would
be n, = Sd3pf&)  - fJp3) - f&wJ3, where the halo velocity dispersion is

N 200 km/set.  By the Pauli  exclusion principle, the neutrino occupation number
zust satisfy f,(p) < 1, which implies the constraint nv/(m,vh)3  = p,/(m~v~) < 1.
The local halo density in the model of Fig. 5 is of order fh - 0.4 GeV CL-~:
for this to be composed of neutrinos would require m, 2 (ph/t$)“4  N 50 eV.
Extending this argument to dwarf galaxies leads to the tighter constraint m, 2
(100 - several hundred) eV. These numbers are significantly higher than the closure
density neutrino mass; turning the argument around, we conclude that in a neutrino-
dominated universe, galaxy halos must be baryonic.

6.4. Relic WIMPS and Cold Dark Matter

In the discussion above, we assumed that the neutrinos are light compared to
their freeze-out temperature, m, < TF - 1 MeV. If neutrinos, or some other
weakly interacting particle, were much heavier, the situation changes: the particle
becomes non-relativistic before freeze-out, so its abundance relative to radiation
is depleted by annihilations-such particles are collectively known as cold relics or
WIMPS.  Exampies  of cold relics are supersymmetric neutralinos.  fermiohic l)itrt,llers
of standard model bosons, with masses in the range m - 10 GeV -1 TeV. If R-
parity is conserved, the lightest supersymmetric particle (LSP) is stable and is a
prime candidate for (cold) dark matter with QLsp - 1.

Accurate calculations of relic WIMP abundances generally require numerical
solution of the Boltzmann equation, which describes how the WIMP abundance
relative to its equilibrium value evolves over time in the expanding universe. How-
ever, one can get an order of magnitude estimate from eqn.(6.1),  which states that
the relic particle abundance (relative to the entropy density) is approximately the
equilibrium abundance at freeze-out. Using the annihilation rate at equilibrium. _.
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r = r~,~(ov), with nep given by the Boltzmann form (6.5) ‘(here assuming p = 0)
and the expansion rate in (6.14), the freeze-out condition becomes (dropping factors
of 27r)

Thus, the relic WIMP to entropy ratio is

h, ( mTF)3/2e-mfTF N 1 m

TF T3F Mp,m(av) K ’

(6.22)

(6.23)

For weakly interacting particles with masses in the GeV - TeV range, the ratio
m/TF - 1 0  - 20 at freeze-out. For concreteness, consider a massive neutrino
(other WIMPS are qualitatively similar but differ in quantitative detail): for non-
relativistic neutrinos of mass m, the four-momentum p - nz, and the annihilation
cross-section estimated at the beginning of the last section becomes (T, - G%m*.
Substitution into (6.23) gives n/s - 10-s(m/GeV)-3. Using eqns.(6.10),  (6.12), and
(6.16),  this corresponds to a neutrino mass density of order C&h2 cz (m/GeV)-2.
This tells us that a particle with mass in the GeV range and annihilation cross-
section typical of the weak interactions will have a relic density comparable to the
closure density of the universe. Note that such cold particles have no trouble fitting
into galaxy halos, unlike light neutrinos.

7. The Inflationary Universe

7.1. Motivation: the Horizon and Flatness problems

The inflationary scenario originally arose out of the attempt to solve several
puzzles .which  arise when one extrapolates the standard cosmology back to the very
early universe. The most important of these puzzles are the horizon and flatness
problems, which we consider in turn.

Consider a light signal emitted from the origin at time t,; from eqn.(2.10),  it
will reach a coordinate distance rh at a time t given by

‘h dr t dt
&-xP = 1, u(t)  .J- (7.1)

If the second integral converges as t, + 0, then there exists a particEe horizon: two
fundamental observers separated by a coordinate distance larger than rh(te  = 0)
will not yet be in causal contact at time t. The proper distance from the origin to
the coordinate rh(te = 0) at time t is called the particle horizon radius dh,

dh(t) = a(t) J t dt
Oa(t)’

U-2)

-
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In the standard cosmology, in the early radiation-dominated phase, a(t) o( t1j2, and
the particle horizon dh N ct. Note that this is also comparable to the Hubble length,
H-‘(t) N t. More generally, dh is finite if the scale factor a(t) grows more slowly
than t at early times; from (2.21),  the criterion for this is p > -p/3, a reasonable
condition for most fluids. Now recall that, in the absence of early reionization, the
CMBR photons last scattered at a time tdec  ‘v 3.6 x 1012h-’  sec. If no 2: 1, photons
emitted from two points separated by the particle horizon distance at the time of
last scattering would arrive with an angular separation of order 1 degree at the
observer today. Therefore, in the standard cosmology, when we look at a map of
the microwave sky, we would expect it to look very anisotropic on angular scales
larger than a degree, because we are seeing photons emit ted from regions which were
not yet in causal contact with each other at the time of last scattering. Yet the
microwave sky is remarkably isotropic over all scales larger than a few arcminutes,
to of order one part in 105. This is the horizon problem: the CMBR is isotropic
over scales which were not yet in causal contact when the photons last scattered.
This argument might appear circular, for we have done this calculation using the
homogeneous and isotropic FRW model, so by assumption the CMBR must appear
isotropic over all scales, and one might conclude that there is no problem. This
objection is spurious: we could easily repeat the derivation of the particle horizon
in a cosmological model which is nearly but not exactly homogeneous and isotropic
(say, with temperature fluctuations which are of order 10e2 instead of 10m5)  and
end up with essentially the same answer. That is, we do not need to assume exact
homogeneity and isotropy for there to be a horizon problem.

The second puzzle of the standard cosmology is the flatness problem. In essence,
this is the puzzle of why the spatial curvature term in (3.2) does not presently
dominate over the matter-density term by a large margin: if k # 0 and X0 = 0, we
can rewrite (3.2) as .

IQ& 11 = u2(t)H2(t)  . (7.3)

From (2.21),  a2H2 = b2 is a decreasing function of time if w 2 -l/3. Consequently,
in the standard cosmology (with non-negative fluid pressure), the observational fact
that Qe is within an order of magnitude of unity means that n(t) must have been
extremely close to unity at earlier times: at the Planck time, for example, it requires
IQ(t,r)  - 11 6 lo-60. In the absence of other prejudices, one might have guessed that
the universe would emerge from the quantum gravity Planck era with the matter-*
density and curvature terms having comparable amplitudes, but the result above
implies that they must have been identical at that time to one part in 106’.  Another
way to state this is: if conditions had been just slightly different at the Planck time.
the universe would have gone into free expansion (a N t) or have recollapsed long
before the present epoch. In other words, the natural timescale for the universe to
become curvature-dominated is the Planck time, tpl N 1O-43  set, yet our universe
is still not strongly curvature-dominated at to m 1Ol7 set m lO”Otpl.

It is important to emphasize that these two puzzles are not inconsistencies of
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the standard cosmological model. Rather they point to features of the observed
universe which the standard model does not explain and which moreover appear
highly unlikely when the standard cosmology is embedded in a somewhat larger
class of cosmological models. That is, they are both problems of initial conditions:
in the “phase space” of initial conditions, the set of initial data that evolve to a
Universe like ours is very small. A more physical way to say this is that homogeneity
and spatial flatness are unstable properties of the model. so the present nearly
homogeneous and spatially flat state of the Universe appears to be very sensitive to
the initial conditions. Inflation was designed to reduce this sensitivity by widening
the class of initial conditions which evolve to a nearly homogeneous and spatially
flat state within the observable universe. This is the sense in which inflation is said
to ‘solve’ the horizon and flatness problems.

7.2. Inflation: necessary ingredients

The discussion of the horizon and flatness problems implicitly pointed to their
solution: what is wanted is an early era when the scale factor accelerates, ii > 0, for
this implies that ti is increasing with time, i.e., that a grows faster than t. Because
of the rapid growth of the scale factor when it is accelerating, this was dubbed
‘inflation’ by Guth4g. From (2.13),  acceleration requires that the energy density be
dominated by some fluid with equation of state p < -p/3. How long must such an
inflationary epoch last? Suppose the accelerated expansion begins at an epoch ti
and ends at t,. Then, from (7.3), we can compare the present and initial curvature
terms,

In the last expression, I have assumed for the sake of argument that the universe is
radiation-dominated for t > t,, that the inflation epoch ends around the GUT scale.
T, - 1Ol5 GeV and that He m Hi.
the scale facto; during inflation,

Here, iv, is the number of e-folds of growth of

a(t,>/a(ti) = exp I
” H(t)dt = eNc .

t,
(i.5)

We would like the ratio on the left hand side of (7.4) t.o be of order unity. 50 t,ha.t,  0,
does not have to be extremely close to one. The right hand side of (7.4) then implies
that the scale factor must grow by at least Nc z 60 e-folds during the inflationary
epoch. If Ri N 1, this is identical to the condition that our observable universe have
emerged from a region that was causally connected at the onset of inflation-thus
solving the horizon problem as well.

The pleasing feature of inflation is that it drives the spatial curvature to zero
via rapid expansion of the spatial hypersurfaces. After inflation, the curvature term
again grows in importance, but it has been reset by inflation to such a tiny value
that it is still catching up to the matter term today. In fact, if the universe enters an
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extended inflationary period, it is quite plausible that it lasts considerably longer
than the required 60 e-folds of expansion, in which case the spatial curvature term
would still be exponentially small today. In other words, unless N, is almost exactly
60, a sufficiently long period of inflation implies that the present universe should be
observationally indistinguishable from being spatially flat, i.e., Ro + X0 = 1.

There is a second necessary ingredient for inflation to be a viable scenario for
the very early universe. The accelerated expansion not only drives the spatial
curvature to zero, but it also drives the density of matter and radiation to zero.
At the end of N= 2 60 e-folds of expansion, the radiation temperature would be at
most T, = xemso which is less than 100 eV if Ti < Mpi. This would invalidate the
argument in eqn.(7.4), where we assumed T, N MCuT, and, among other things,
make it impossible to account for the light element abundances through primordial
nucleosynthesis. Thus, a period of accelerated expansion by itself is not enough to
solve the horizon and flatness problems: at the end of inflation, the energy density in
the fluid that drives the inflationary expansion must be converted into radiation, to
repopulate and reheat the universe. A minimal condition for successful inflation is
that the reheat temperature after inflation be high enough for the baryon asymmetry
to be generated; if baryogenesis takes place at the electroweak scale, this implies
T, > 100 GeV. :

7.3. Inflation: Scalar Field Dynamics

In 1980, Guth4g  proposed that a scalar field trapped in a ‘false vacuum’ state
with non-zero potential energy could act as the driving force of inflation and thereby
solve the horizon and flatness problems. It is easy to see that this fits the bill for
accelerated expansion: the energy-momentum components for a classical scalar field
4(x,t) with potential V(4) are

- -

and

ps = 2 W)’ + V(d)
2 +T--

(7.6)

(7.T)

If the field is trapped in a local minimum d, of the pot.ential.  it will relax to a static
configuration with y4 = -/-‘+ = -I/*(&c)  = constant, which satisfies the criterion
for accelerated expansion. In this case, eqn.(2.12) becomes H2 = 87rGV(~#1,)/3
= constant, and the solution is the exponential de Sitter expansion of (3.7). In
other words, a field dominated by constant potential energy acts as an effective
cosmological constant.

While a promising idea, ‘false vacuum’ inflation did not satisfactorily incorporate
the second necessary ingredient of reheating: once the field is trapped for sufficiently
long in the false vacuum state, it must tunnel through the potential barrier which
held it there, in order to reach the true vacuum where V(&) = 0. In this case.
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all the potential energy of the false vacuum ends up in the walls of the nucleated
bubbles of true vacuum, and is not converted into radiation by bubble collisions
efficiently enough. The remedy was soon provided by Linde5’  and by Albrecht
and Steinhardt’l: instead of the field being trapped in a metastable minimum of
the potential, it can be classica.lly  evolving on a very flat potential if it is initially
displaced from the potential minimum. If the potential is sufficiently flat, the kinetic
and potential energy terms in eqns.(7.6-7)  will redshift  away with the expansion.
leaving the potential term to dominate as before. Inflation ends when the field
reaches a steeper part of the potential, the field speeds up and eventually oscillates
about its potential minimum. If 4 is coupled to lighter particles, these coherent field
oscillations lead to particle creation and thereby reheat the universe: the scalar field
energy is converted to radiation. This ‘new inflation’ model thus solves the ‘graceful
exit’ problem of the original false vacuum scenario.

In these early inflation models, it was assumed that the scalar field driving
inflation, the in&ton, was a Higgs field associated with the spontaneous breakdown
of the grand unified gauge symmetry. The field would be initially displaced from
its global minimum by finite temperature effects. It was soon realized, however,
that the inflaton must be extremely weakly self-coupled in order for its quantum
fluctuations to generate an acceptable amplitude of density perturbations. Since
Higgs fields are coupled to gauge fields, however, radiative corrections typically
generate large self-couplings. As a result, the concept of inflation was divorced
from Higgs fields and gauge symmetry breaking, and a Pandora’s box of particle
physics models was opened up. Nevertheless, the different models of inflation share
many common dynamical features, and it is those which I will focus on.

To see how inflation works in a little more detail, consider the dynamics of the
evolving scalar field. Within each Hubble volume, (i.e.,
the evolution of the field is described by the classical
homogeneous field (a(t),

c$+3H4+r$+V’(c$)  =o (

ignoring spatial gradients)
equation of motion for a

(W .

where I’ is the decay width of the inflaton field, a phenomenological  term which has
been introduced to roughly model the back-reaction effects of particle creation and
reheating on the scalar field. The expansion rate H = iL/a is determined by the
Friedmann equation,

Hz = -$ [li(c$) +-$1 ,
PI

and it is also useful to have the second order Friedmann equation,

ii- -
a - -& p* - VW] *

From (7.10), the condition that the universe be inflating, 2 > 0, requires that the
kinetic energy by sub-dominant, $ < V. A sufficient,, although not necessary,

-
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condition for this is that the field be slowly rolling (SR) in its potential. In this
context, ‘slowly rolling’ is a technical term: the field is said to be slowly rolling
when its motion is overdamped, i.e.,

&c3H&, (7.11)
. .

so that the 4 term can be dropped in the equation of motion (7.8) (we assume
r << H during this phase). From (7.8), the defining SR condition implies that
b* < 2V@); thus, if the SR condition is well satisfied, the universe is inflating.

Slow-rollover is analytically convenient, for it implies two consistency conditions
on the slope and curvature of the potential:

(7.12)

where the slow-roll equation of motion has been used in the last equality (eqn.(7.8)
without the second derivativer term). Suppose inflation begins when the field value
is d(ti) = tii, and the SR epoch ends when 4 reaches a value &, at which one of
the inequalities (7.12) is violated. To solve the cosmological puzzles, we demand
that the scale factor of the universe inflates by at least 60 e-foldings during the SR
regime,

Once the potential is chosen, (7.12) determines de in terms of the parameters in V.
The condition (7.13) then constrains the initial value & of the field.

Once 4 grows beyond &, the SR condition breaks down, and the field evolution is
more appropriately described in terms of oscillations about the potential minimum.
These coherent oscillations excite the creation of particles to which d is coupled.
which in turn damps the oscillations and reheats the universe once the created
particles therma.lize  by scattering. By energy conservation, the phenomenological
damping term I’ in the scalar equation of motion-the scalar decay rate-acts as a
source for radiation,

fir + 4Hp,  = r$* . (7.14)

We can identify two qualitative reiimes  for reheating: (i) if l? > H, reheating is
very efficient: nearly all the scalar potential energy is converted to particles, leading
to a reheat temperature given by T&, N V( &J; (ii) on the other hand, if l? < H,
reheating is inefficient, and the scalar field oscillations partially redshift  away before
converting to particles. In this case,  the reheating temperature is lower, and is given
bY

TRH = (45/4a3g.)‘/4~~  , (7.15)

where g* is the number of relativistic degrees of freedom. Clearly the reheating
efficiency is determined by the couplings of the inflaton to other fields, Efficient _
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reheating, say, with a reheat temperature high enough to allow baryogenesis at
the GUT scale, TRH - 1014  GeV, requires relatively strong couplings. In many
models, however, such couplings induce loop corrections to the scalar self-interaction
which would upset the requisite flatness of its potential. As a result, a high reheat
temperature is not always possible.

7.4. Quantum Fluctuations and Density Perturbations

Soon after the arrival of false vacuum inflation, it was appreciated that inflation
could in principle52*53 provide one of the holy grails of cosmology: a causal mecha-
nism for the origin of density fluctuations that later grow to form large-scale struc-
ture. The problem can be seen by first cousidering  the standard cosmology without
inflation: in this case, the physical wavelength associated with a density perturba-
tion mode grows with the scale factor, Xphys - a(t), while the Hubble length scales
up more rapidly, H-’ - t (recall the current Hubble distance is dh - H{’ = 3000h-’
Mpc). Consequently, at a redshift  larger than :A, where 1 + :A - (H<‘/Xo)*,  per-
turbations with present scale X0 were larger than the instantaneous Hubble radius,
which sets the lengthscale for causal processes. For perturbations on cosmologi-
tally interesting scales today, say, X0 - 1 - 3000h-’ Mpc, this implies zx 5 106,
or TX rS 100 eV (here, for the sake of simplicity, I have assumed matter-dominated
expansion throughout; the reader can insert the appropriate radiation-dominated
corrections to make the numbers more rigorous). In the standard cosmology, how-
ever, curvature perturbations cannot be causally generatedeon  scales larger than the
instantaneous Hubble radius, because of local energy conservation. Thus, pertur-
bations on scales of galaxies and larger must have been generated by some physical
process acting at T s 100 eV, after these scales crossed inside the Hubble ra-
dius. While some work has been done on a ‘late time phase transition’ at such a
scale,54 such models do require new physics at surprisingly low energy scales, and
have not been met with overwhelming enthusiasm. Moreover. the resulting CMBR
anisotropies in such scenarios may be intolerably largess.  If one does not postulate a
late-time origin for large-scale perturbations, then they must simply be postulated
as initial conditions, because they could not have had a causal origin at epochs
z 2 2~. (Note that this argument applies to curvature perturbations; an important
loophole is the early generation of large-scale isocurvature perturbations.)

An early epoch of inflation ;ilters this 5ituatioii: during  iLCCClClYttC(l  oxpmsion.
the Hubble radius H-’ grows more slowly than the scale factor (in a de Sitter epoch,
H-’ is constant). Thus, a perturbation of comoving wavelength X could be created
causally on a physical scale less than H-’ during inflation, expand outside the
Hubble radius at some time tA(X) during inflation, and then eventually ‘re-enter’
the Hubble radius in the recent radiation- or matter-dominated era at a time tB( X).

This hypothetical possibility was turned into a physical plausibility when it was
realized that quantum fluctuations of the slowly rolling field in new inflation could
provide a mechanism for generating density perturbations5”.  In a nutshell, one
treats the spatial fluctuations of the field about its homogeneous classical expec-

-.
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tation  value as an approximately massless  quantum field in de Sitter space; in its
vacuum state, such a field has a spectrum of zero-point fluctuations, with an rms
amplitude A& = H/27r. These spatial variations in 4 correspond to fluctuations in
the inflaton energy density, which are converted into adiabatic density fluctuations
in all species during reheating. The resulting density perturbation amplitude when
a comoving wavelength X re-enters the Hubble radius is given approximately by

(7.16)

It is straightforward to show that scales corresponding to the range from the galaxy
scale to the present Hubble radius, X0 = l-3000/2-’  Mpc, crossed outside the Hubble
radius in the interval 50 - 60 e-folds before the end of inflation. During slow-rollover,
the inflaton is effectively at its terminal velocity, which changes slowly over time;
since the period of ten e-folds of the scale factor is brief. the right hand side of
(7.16) changes very little over this interval. As a result, the density perturbation
amplitude at Hubble radius crossing (te(,!)) is nearly constant.

Now, the density perturbation amplitude at Hubble radius crossing is essentially
the gravitational potential perturbation on that scale, 6cP~  N G&MA/X N G6pxX2  N
(~PlPMx,h,aw29 where we have used the Friedmann equation to relate Gp -
H*. Thus, inflation predicts that the gravitational potential fluctuations are nearly
independent of scale, 6@A N constant. Such a scale-invariant spectrum of potential
fluctuations was first proposed on different grounds by Harrison, Zel’dovich,  and
Peebles and Yu, ten years before inflation. Note that the gravitational potential
also sets the scale for the large-angle CMBR anisotropy through the Sachs-Wolfe
effect: photons climbing out of deeper potential wells at the time of last scattering
suffer a larger gravitational redshift, resulting in the temperature shift &T/T =
J9/3 - VP/P) X=H-I (this result holds for the Einstein-de Sitter model, 520 = 1).
Considerable excitement was generated when analysis of maps of the CMBR sky
from the first year of COBE DMR data yielded a large-angle anisotropy consistent
with the scale-invariant spectrum3.

To get a feel for the result (7.16),  I sketch out the steps of the calculation here
(for a particularly complete discussion, see5’).  The idea is to treat small fluctuations
semi-classically, by expanding the scalar field and metric perturbatively around their
homogeneous solutions. e.g.,

4(x, t> = 40(t) + wx, t) 7 (7.17)

where c&,(t) is the classical homogeneous solution to the scalar equation of motion in
the FRW background, eqn.(7.8), and &$ is a quantum field operator with equal-time
commutation relation

[6$(x,  t), d&(x’, t)/%] = iS3(x - x’)/a3(t) . (7.18)

A similar expansion is performed for the metric. It is convenient to consider the ’
-
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Fourier transform

&(x, t) = / f$ [ak$k(t)eikmx + h.c.] , (7.19)

where C-Q is the annihilation operator for mode k, @r;(t)  is the classical mode function.
and X: = +,phys is the (fixed) comoving wavenumber of the mode. We will consider
the power spectrum P,(k) of the field, the contribution per logarithmic wavenumber
interval to the variance of the fluctuation,

The power spectrum is proportional to the Fourier transform of the two-point cor-
relation function of the field in the vacuum,

k3
P,(k) = zjp J d3seik*"(O16c#(x)f5~(0)10)  = &I* * (7.21)

In general the mode equation for & can be complicated, since it involves coupled
scalar and gravitational degrees of freedom. However, at least in the synchronous
gauge (agw  = 0), the term involving metric perturbations can be neglected, yielding

k2
& + 3H& + --@ + v”(#~)+~ = 0 . (7.22)

The slow rollover conditions imply that the potential term in (7.22) is also negligible,
reducing the equation of motion to that of a free massless  field in de Sitter space.
The normalized solution is

$le(t) = Tw for k/aH >> 1
’constant for k/aH < 1

(‘7.23)

The mode crosses outside the Hubble radius during inflation when X,,, = H-l,
i.e., when k = aH. The solution (7.23) states that the mode oscillates inside the
Hubble radius and then freezes out when it crosses outside. This is the mathematical

*statement of the physical intuition that microphysics ouly operates coherently on
scales less than Hubble radius. For modes inside the Hubble radius, from (7.21)
and (7.23) the power spectrum can be written P,(k) = (H/2r)*(k/Ha)*.  When a
mode crosses outside the Hubble radius, the rms fluctuation on that scale is given
bY

(A4)kZa~  = Pi’*(k  = aH) = $ . (7.24)

To find the resulting density perturbation amplitude, one must solve the per-
turbed Einstein equations; due to the gauge freedom in the choice of time coordi-
nate, that is, in the way spacetime can be sliced up into spacelike hypersurfaces,  one
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chooses a gauge to simplify the problem at hand. It is particularly convenient to
make use of a gauge-invariant measure of the perturbation amplitude for adiabatic
(curvature) perturbations,

c=3wp y, ) (7.25)
0 0

where (P is an analog of the Newtonian potential that completely specifies the in-
trinsic Ricci curvature of the perturbed 3-surfaces. The variable < is useful because
it generally satisfies C = constant for perturbations far outside the Hubble radius,
It < aH, both during and after inflation. Moreover, the potential @ is negligible
at Hubble radius crossing, so, defining the power spectrum of < by analogy with
(7.20), we have

(7.26)

where we have used (7.24) and the slow-roll equation of motion, 3H$ = -V’(d).
This completes the sketch of the derivation of (7.16).

Using the slow-roll equation of motion, the perturbation amplitude can be ex-
pressed in terms of the height and slope of the potential,

p1i2 = v5ii-G~ .c
Pf

(7.27)

A useful way to characterize the scale-dependence of the perturbations is to consider
the density perturbation power spectrum, P’(k) = j&j2, where 61, is the Fourier
transform of 6p(x)/p, and we relate different conventions for what is called the
‘power spectrum’ by using the notation P = cE3P.  The density spectrum can be
written as a power law in wavenumber, P,(h) - I;“=,  where n, = 1 corresponds
to the scale-invariant spectrum, i.e., to PC = constant. (To see this, recall that
@A - wP)x(w-‘)** and that the contribution per logarithmic wavenumber
interval to the rms fluctuation on scale X is (6p/p)~ - k3/2]~kl.) Small deviations
from scale-invariance can be expressed in terms of the index nI, - 1.

One can carry through an argument similar to that above for gravitational wave
perturbations in de Sitter space. Expanding the metric about the de Sitter FRW
solution. the tensor modes h.+,, satisfy the massless  scalar field equation (7.22)
(with no potential term). Defining a canonically normalized scalar field for each
polarization state, h+,, = J~c$+,~, the tensor amplitude at Hubble crossing is

(7.28)

The induced Sachs-Wolfe anisotropy on large scales is 6Z’/T - hk=Ho.
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7.5. Chaotic Inflation: a worked example

The result (7.26) for the perturbation amplitude provides a severe constraint on
the form of the inflaton potential. To get a feeling for the numbers, consider one
of the simplest forms for the potential, a pure quartic V(4) = Xd4/4!,  an example
of Linde’s chaotic inflation. In this case, the field rolls down to the origin from its
initial value: the slow roll conditions (7.12) are satisfied for aj > o, = 14,,/&.  ’ s
and the number of inflation e-folds is given by (7.13),

w#%, 44 = jg (4: - 4:) = $f - 1 . (7.29)

Thus, the condition of sufficient inflation, IV, > 60, requires 4; > 3.1&1~/,  and the
density perturbation amplitude on the scale of the present Hubble radius is

3

p.‘/* = (“X)1/2  & N 5()y/2 .
c

( )
. (7.30)

The perturbation spectrum is almost exactly scale-invariant in this model, n, 21
0.95, because 4 changes very little in the interval between 60 and 50 e-folds before the
end of inflation. The COBE observation of CMBR anisotropy indicates Pi’* 2~ 10e4,
which implies the inflaton self-coupling must satisfy

x < 4 x lo-l2 . (7.31)

7.6. Naturalness and the Small Coupling Problem

The preceding example illustrates a general conclusion that applies to all in-
flation models: the inflaton field must be very weakly self-coupled. In different.
models, this constraint appears in different guises, but it is alway present in one
form or another: the potential must contain a very small dimensionless number of
order 10-12.

Attitudes concerning this problem vary widely among inflation theorists: it is
often said that X6 m lo-‘* constitutes unacceptable ‘fine tuning’, but that is a
misapplication of t,he he tuning concept  in t,llis context.  To others. it is not ill1 issutr
of great concern, because we know there exist other small numbers in physics, such
as lepton and quark Yukawa couplings gv N 10m5  and the ratio Mveal;/Mp,  N 10-l’.
Partly as a consequence of the latter view, in recent years: it has become customary
to decouple the inflaton completely from particle physics models, to specify an
‘inflaton sector’ with the requisite properties, with little regard for its physical
origin.

Nevertheless, it is meaningful and important to ask whether such a small value
for X4 is in principle unnatural. Clearly, the answer depends on the particle physics
model within which 4 is embedded and on one’s interpretation of naturalness. A -
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small parameter X is said to be “technically natural” if it is protected against large
radiative corrections by a symmetry, i.e., if setting X + 0 increases the symmetry
of the system. For example, in this way, low energy supersymmetry might protect
the small ratio i%&,k/Mp,  by cancelling boson and fermion loops. However, in
technically natural models, the small coupling X4, while stable against radiative
corrections, is itself unexplained, and is generally postulated (i.e., put in by hand)
solely in order to generate successful inflation. Technical naturalness is a useful
concept for low energy effective Lagrangians, like the electroweak theory and its
supersymmetric extensions, but it points to a more fundamental level of theory for
its origin. For example, the underlying origin of the mass hierarchy Mweak/n/lpl in
supersymmetric theories is thought to be associated with hidden sector physics in
supergravity theories, which start out with no small dimensionless couplings at the
Planck scale. Since inflation takes place relatively close to the Planck scale, it would
be preferable to find the inflaton in such particle physics models which are “strongly
natural”, that is! which have no small numbers in the fundamental Lagrangian.

In a strongly natural gauge theory, all small dimensionless parameters ulti-
mately arise dynamically, e.g., from renormalization group (or instanton) factors
like exp( -l/o), where o is a gauge coupling. In particular, in an asymptotically
free theory, the scale Ml, at which a logarithmically running coupling constant
becomes unity, is A41 N IK&‘*/~,  where Mz is the fundamental mass scale in the
theory. In some models, the inflaton coupling X4 arises from a ratio of mass scales.
kj - (W/j5f2)q. A

pressed, Xd N e-qia.
s a result, in such models, Xd is naturally exponentially sup

One example of a class of such models is ‘natural inflation’,5s~5g  in which the role
of the inflaton is played by a pseudo-Nambu-Goldstone-boson (in particle physics
models, an example of this is the axion).  In its simplest incarnation, consider a
global U(1) symmetry spontaneously broken at a high-energy scale f by a non-
zero expectation value for a complex scalar field, the potential for which takes the
familiar Mexican-hat (or wine bottle) form. At scales much below f, the only
relevant degree of freedom is the massless  angular variable @ around the bottom of
the potential, At an energy scale A < f, the symmetry is explicitly broken-the
Mexican-hat is tilted, generating a potential for 4 which is generally of the form

V(4) = A4[1 f cos(AU/f)] . (7.32)

In axion models. .1 characterizes the scale at which a running gauge coupling
becomes strong, and is related to the fundamental scale f by A N fe-Qa. For
f - MPIN 10” GeV and A - k&T - 10 l5 GeV, this field can drive inflation; in
this case, the effective quartic coupling is X4 N (A/f )4 w 10-13,  as required. In the
standard model and in typical grand unified theories, the only strong gauge coupling
is that of &CD, with AQCD z 100 MeV. However, in supergravity and superstring
models, there is a ‘hidden’ gauge sector which interacts only gravitationally with
ordinary quarks and leptons. It has been suggested that the hidden sector gauge
interactions become strong at a scale comparable to that above, A N 1014 GeV, in
order to break supersymmetry at the TeV scale in the observable sector. -.
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An interesting possibility in this case is that the perturbation spectrum can
deviate significantly from scale-invariance: the spectral index is given by

G,n,Nl--83rf2 ’ (7.33)

The constraint that the universe reheat after inflation to a temperature TRY{ X 100
GeV leads to the constraint f/h/lpi  > 0.3, which implies n, 2 0.5, allowing a small
but significant break from scale-invariance (n, = 1). Contrary to some erroneous
statements in the literature, such a breaking from scale-invariance does not require
any fine-tuning of the parameters in this model. Arguments from the formation
of structure, combined with the COBE observations, at any rate indicate that the
spectral index n, 2 0.6 - 0.7.

8. A Brief Look at Structure Formation

Let us finish with a cursory look at how primordial perturbations, e.g., from
inflation, end up looking today. As discussed above, the primordial spectrum from
inflation is generally a power-law in wavenumber, Pp( Ic) = I&.(  ti)12 = Ak”*, and
the present spectrum is related to the primordial one through a transfer function,
IsdtO>12 = T’(k)16&j)12.  The transfer function T(I;) encodes the scale-dependence
of the linear (6 < 1) gravitational evolution of the perturbation modes; it depends
on the nature of the dark matter (hot or cold), its density (n,,+l) as well as 0~ and
HO. On scales which enter the Hubble radius after the universe becomes matter-
dominated, k < keq N 0.200h*  Mpc- ‘, all perturbations undergo the same growth
rate, so the transfer function p(k) N 1; on smaller scales, k > keg, it bends over
to P(k) N k-4 as k + 00, reflecting the suppressed growth of fluctuations which
cross inside the Hubble radius while the universe is still radiation-dominated. For
standard cold dark matter (CDM), we have h = 0.5 and assume negligible baryon
density, QZB  < 1, SZcold = 1, leading to the characteristic scale k,, cv 0.05 Mpc-‘. A
reasonable analytic fit to the linear transfer function for CDM models is given by60

T(k) = l+g+
’ (8.1)

(in the approximation 0~ = 0, ,c2 = f&,,,d).  For hot dark matter.  011 the other hand,
in the absence of seed perturbations such as cosmic strings, the transfer fuuction  is
also exponentially damped by relativistic neutrino free-streaming for wavenumbers
larger than k, N O.l(m,/20eV)  Mpc-‘. ‘Finally, the present density spectrum is
related to the galaxy power spectrum by a bias prescription; for the simplest linear
bias model,

As mentioned in Sec. 2, galaxy catalogs such as the CfA, the IBAS 1.2 Jy and
QDOT, and the angular APM and EDSGC catalogs, suggest that the spectrum

-
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tow-density CDM
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Figure 7: The APM galaxy angular correlation function of Fig. 1 is shown with two
model predictions: standard (Qh = 0.5) CDM and a best-fit low-density CDM model
(Rh = 0.17) (from ref. 62). The upper and lower bracketing curves for each model
indicate the expected 1 - 0 spread due to cosmic variance.

predicted in (8.1) and (8.2) with standard CDM (flh = 0.5), linear bias, and n, = 1
may not have exactly the right shape to match the observed galaxy spectrum, hav-
ing relatively too little (too much) power on large (small) scales. Solutions to this
extra-power problem can be classified according to which element on the right hand
side of Eqn.(8.2)  one tinkers with. In all cases, the aim is to flatten the shape of the
spectrum at intermediate wavenumbers k N 0.05 h Mpc-’ by increasing the relative
power on these scales compared to smaller wavelengths. For example, as (8.1) indi-
cates, one can abandon ‘standard’ CDM and increase the characteristic wavelength
where the transfer function T(k) bends down, providing more relative large-scale
power, by reducing 00 from unity; in the context of inflation, this requires either
a special choice of the number of e-folds N, or the introduction of a cosmological
constant to ensure no + X0 = 1. An example of this is shown in Fig. 7. which again
shows the APM galaxy angular correlation function plotted against the prediction
for ~(B)/(b~~lcr~)~  (see below) in linear theory for standard and low-density CDM.
both with nJ = 1. Recall that lowering 00 also increases the expansion age Hoto.

Another recently popular alternative is to employ a mixture of hot and cold.dark matter, with Slhol = 1 - &old = 0.3; from eqn.(6.21),  this can be achieved
with a light neutrino with mass m, N 7 eV. Due to free-streaming, the neutrino
admixture partially suppresses power on small scales, which is what is wanted. A
third possibility is to retain standard CDM but consider primordial perturbation
spectra with n, < 1 from inflation, but it appears that such tilting of the spectrum.
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when normalized to COBE, does not by itself solve the power problemjg without
violating other constraints. Alternatively, one can admit a more complex scheme for
biasing in which the bias factor in (8.2) is scale-dependent, bs ---) b,(k), and increases
at large scales61*62 . Unlike the other fixes, in this case the extra power on large scales
is an optical illusion, a property of the galaxy field but not the underlying density
field. This difference leads to qualitatively different behavior of the higher-order
(e.g.: three-point) galaxy correlation functions, an effect which should be testable
against observations63.

Since all inflation models predict a deviation from scale-invariance at some level.
it is interesting to see what limits on the spectral index n, follow from COBE in the
context of standard CDM. For these models, the density power spectra form a two-
parameter family characterized by the spectral index n, and the normalization -4.
Instead of A, it is common to normalize spectra by the rms linear mass fluctuation
in spheres of radius 8 h-’ Mpc, 0s E ((SM/M)2)~!?,,-,,P~, where

2-
*‘R - ~~2~~dkk21’(k)W2(kR)  ,

0

and the window function

ww = & (sin kR - kR cos kR)

(8.3)

filters out the contribution from small scales. Redshift  surveys of optically selected
galaxies (in particular the CfA and APM surveys) indicate that the variance in
galaxy counts on this scale is of order unity. Thus, in a linear bias model (and
ignoring non-linear gravitational effects), the bias factor for these galaxies would be
bopt N l/us; for other galaxy populations, bgaps may differ from unity.

From the Sachs-Wolfe effect, for a given normalization and spectral index. we
can calculate the expected large-angle CMBR anisotropy. The rms temperature
fluctuation on the scale of 10” observed by COBE, OT( loo) = 1.085 x 10a5(  1 xkO.l69),
then yields a relation between them, (~8 N e-2.63(1-n*)  [l f 0.21. Thus, models which
obtain more relative large-scale power by tilting the spectrum to n, < 1 reduce
the power on galaxy scales. If us 6 0.5, the power on small scales is reduced to
the point that g,alaxy formation would occur too recently:  in t,hc  c:oiitcxt  of t.llesc‘
models, this leads to the constraint ‘n, ;5 0.6 - 0.7. This bound assumes that
gravitational waves make a negligible contribution to the CMBR signal. While
this is a good approximation for models such as natural inflation, there are other
inflation potentials for which the gravity wave contribution to the large-angle CMBR
anisotropy becomes appreciable when n, < 1. An example is power law inflation.
produced by an exponential potential for +: in this case, the relative contribution
of the tensor modes compared to the scalar (density perturbation) modes to the
large-angle anisotropy is R N 6(1 - n,). However, contrary to some statements in
the literature, this relation is not generic to inflation but only holds approximately
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for a restricted cls.ss of models. Clearly, for models in which .it does apply, the effect
is to lower the COBE constraint on the perturbation amplitude ~8 for fixed n,. For
models with n, < 1, this makes the epoch of structure formation more recent, and
the corresponding lower bound on n, even tighter. As this subject has become a
booming theoretical industry in the last year, I refer the reader to recent issues of
Physical Review D for more details.
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Appendix A: Notation and Units

It is useful to be able to translate back and forth between astronomical units
and high energy physics units. The fundamental unit of distance in extragalactic
astronomy is the parsec (PC): 1 pc = 3.26 light-years = 3.09 x 10’” cm. The typical
galactic scale is measured in kiloparsec (kpc): for example, the solar system is
approximately Ro = 8 -8.5 kpc from the center of the Milky Way. The nearest large
galaxy to our own is Andromeda, at a distance of roughly 700 kpc, and the typical
distance between neighboring large galaxies (outside clusters) is a few Megaparsec
(Mpc). Absolute extragalactic distances are uncertain by a factor of order 2, and
are usually given in terms of h-’ Mpc, where the Hubble parameter Hs = 1OOh
km/sec/Mpc, and observations indicate 0.4 < h < 1 (see below). Cosmological
distances are often estimated using redshifts via the Hubble law. u = cz = Hod.  and
so are sometimes expressed in terms of recession velocity: 100 km/set  = 1 12-l Mpc.
Astronomical masses and luminosities are measured in solar units, MO = 1.989 x 1O33
gm, Lo = 3.86 x 1O33 erg/set.  Large galaxies commonly have a luminosity of order
10’0 - 10”Lo and mass of order 10” - 101*Mo. In particle physics, it is often
convenient to calculate in natural units. in which t2 = c = k~ = 1. In this case.
all dimensionful quantities can be cxpresscd  in &ts of energy, say in GcV: for
example, Length = l/Energy. At the end of a calculation, to convert an expression
to physical units, insert appropriate powers of tic = 2 x lo-l4 GeV cm, and convert
lengths to times by dividing by c = 3 x 10” cm/set.  When gravity is involved, use
the Planck mass (energy) Mpl = G-l/* = 1.2 x 10” GeV. Finally, when converting
energy to temperature (E = I;BT) and vice versa, use 1 eV = 1.16 x lo4 K. To
go from particle physics to astronomical units, it is sometimes handy to remember
that the sun contains about 1O57 protons, i.e., 105’ GeV = lJ4@.
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